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1 An introduction to equivariant cohmology by Loring Tu

• Video lectures: https://www.youtube.com/watch?v=0hwDePh2RoY&list=PLQZfZKhc0kiAgfFYCdSQ3px6rHc9SMCXY&
index=2&ab_channel=NCTSMathDivision

• Book: Introductory Lectures on Equivariant Cohomology by Loring W. Tu.
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1.1 Lecture 1: Overview

Equivariant cohomology is essentially the algebraic topology of a space with a group action.
Cohomology (with any kind of coefficients) is a functor {topological spaces, continuous maps} → Rings. It gives

invariants of topological spaces.
In this course, not only topological spaces, but topological spaces with a group action.
Def. An action of group on a topological space X is a continuous map G × X → X, (g, x) 7→ g · x s.g. 1 · x = x,

g · (h · x) = (gh) · x, ∀g, h ∈ G.
Equivariant cohomology H∗G(·) : {G-space} → Rings.
De Rham theorem: For a C∞ manifold M , there is an isomorphism H∗(M ;R) ' H∗{Ω(M)}, where Ω(M) is the

complex of C∞ forms on M .
In equivariant cohomology, there is an analog of the de Rham theorem:
The equivariant de Rham theorem: let G be a Lie group and M a C∞ G-manifold.
It is possible to construct a differential complex ΩG(M) out of C∞ forms on M and the Lie algebra g ∈ G, s.t.

H∗G(M) = H∗{ΩG(M)}. The complex ΩG(M) is called the Cartan complex. the elements of the Cartan complex ΩG(M)
is the equivariant differential forms.

For example, if G = S1, then ΩS1(M) = {
∑
αiu

i|αi ∈ Ω(M)S
1}.

(If X is in the Lie algebra of S1, which is R, or T1(S1) (the tangent space at origin of S1), u is the dual basis, i.e. the
basis for T ∗1 (S1))

Equivariant cohomology is very useful because it can be used to calcualte ordinary integrals on a manifold (which is
usually very hard). We have

Equivariant localization theorem (Atiyah, Bott, Berligne, Vergne): Let G be a torus (S1× · · ·×S1) and M a compact
oriented G-manifold with isolated G fixed points. If ω is an equivariantly closed form, then∫

M

ω =
∑
p∈MG

r∗pω

eG(νp)
,

where νp is the normal bundle of p (which is the tangent space), and eG is the equivariant Euler class.
This theory gives a method for calculating the integral of an ordinary differential form.
The main theorems of this course is The equivariant de Rham theorem: and the Equivariant localization theorem.

1.2 Lecture 2: Definition of equivariant cohomology

Definition (G-space). A G-space X is a topological space X with continuous action of a topological group G.

Definition (G-equivariance). If X and Y are G-spaces, a morphism is a continuous map f : X → Y s.t.

f(g · x) = g · f(x), ∀g ∈ G, x ∈ X.

Such a map is called G-equivariant.

Candidates for H∗G(−): 1) H∗(X/G), where X/G = {G-orbits}.

Example: G = Z acts on M = R by n · x = x+ n, then M/G = S1, H∗(M/G) = H∗(S1) =

{
R, degree 1,2
0 otherwise

Example: G = S1 acts on M = S2 by rotation. M/G = I, so the quotient space cohomology is trivial, which is off of
our expectation of the definition of equivariant cohomology.

Crucial difference between the two examples: in the 1st example the G action is free, where in the 2nd example it is
not. “When you have a free action, and you take the quotient, you get something nice; otherwise, what you get can be
something weird.”

Definition (Free action). If G acts on X, the stabilizer Stab(x) := {g ∈ G|g · x = x}. The action is free if Stab(x) =
{1}∀x ∈ X.

Every left action of G on X can be converted to a right action. (Suppose G acts on the left on X, then x · g := g−1 · x
suffices.)

If G acts on P and M on the left. Then the diagonal action of G on P ×M is

g · (p,m) := (g · p, g ·m).

If G acts on P on the right but on M on the left, then the diagonal action is

g · (p,m) := (p · g−1, g ·m).
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Lemma. If G acts freely on P on the right, then no matter how it acts on M on the left, the diagonal action of G on
P ×M is free.

Proof: look at the stabilizer: suppose g · (p,m) = (p,m)⇔ (p · g−1, g ·m) = (p,m)⇔ p · g−1 = p and g ·m = m, but
as G acts freely on P so we must have g = e from the first.

For any topological group G, there exists a contractible space P on which G acts freely. We denote such a space as
EG (there can be many such spaces).

If P is a contractible space on which G acts freely, then P ×M will have the same homotopy type as M , and G will
act freely on P ×M . It turns out that such a space P exists for any topological group G, and it is deoted by EG.

Definition (Homotopy quotient, equivariant cohomology). . The homotopy quotient of M by G is defined as
MG := (EG×M)/G, and we define equivariant cohomology as

H∗G(M) := H∗(MG).

(Need to prove that this definition is independent of the choice of EG.)
Let G = S1. S acts on Cn+1 by λ(z0, z1, ..., zn) = (λz0, ..., λzn). If

∑
|zi|2 = 1, then it defines S2n+1. S1 acts on

S2n+1. Def: S2n+1/S1 = CPn. We have S1 ⊂ S3 ⊂ S5 ⊂ · · · , and taking the quotient of each place with respect to S1

gives CP 1, CP 2,...
Let S∞ =

⋃∞
n=0 S

2n+1. There is an action of S1 on S∞, which is a free action: λ·(z0, ..., zn) = (z0, ..., zn), i.e. λzi = zi,
since there’s at least one j s.t. zj 6= 0, so from λzj = zj we get λ = 1. Therefore, S1 acts freely on S∞.

Definition (Weakly contractible). A space X with πq(X,x0) = 0 for all q ≥ 0 is called weakly contractible.

it’s easy to show that this definition does not depend on the choice of x0.

Theorem (Whitehead’s theorem). If a continuous map f : X → Y of CW complexes induces an isomorphism in all
homotopy groups πq, then f is a homotopy equivalence.

Corollary. A weakly contractible CW complex X is contractible.

We will show that S∞ is contractible by showing that S∞ has vanishing homotopy groups at all positive degrees. See
next lecture.

π1(X,x0) = {[continuous maps f(S1, 1)→ (X,x0)]}
πq(X,x0) = {[continuous maps f(Sq, (1, 0, ..., 0))→ (X,x0)]}

1.3 Lecture 3: Homotopy groups and CW complexes

Definition (Fiber bundle). A fiber bundle with fiber F is a subjection π : E → B which is locally a product U × F ,
o.e. every point b ∈ B has a neighborhood U s.t. there is a fiber-preserving homeomorphism φU : π−1(U)→ U × F .

Example: (1) Covering space π : E → B; (ii) π : R → S1 is a bundle with fiber Z; (iii) π : S2n+1 → CPn is a fiber
bundle with fiber S1.

Theorem (Homotopy exact sequence of a bundle). Suppose ρ : (E, x0) → (B, b0) is a fiber bundle with fiber
F = ρ−1(b0). Assume B is path-connected. Let x0 be a base point of F , and i : (F, x0) → (E, x0) the inclusion. Then ∃
exact sequence

· · · → πk(F, x0)
i∗−→ πk(E, x0)

ρ∗−→ πk(B, x0)→ πk−1(F, x0)→ · · · → F0(F, x0)→ π0(E, x0).

Example: πk(S1). By the homotopy exact seuqnce of π : R→ S1 above, it is easy to get πk(S1) =

 0 k ≥ 2,
Z, k = 1,
{0}, k = 0.

Def. (Attaching cells): let Dn be the n-dimensional closed unit disk. Let A be a topological space. φ : ∂Dn → A the
attaching map. X is obtained from A by attaching an n-cell via φ if X = (AqD)/ ∼, where x ∈ ∂Dn ∼ φ(x) ∈ A.

Denote en = int(Dn) to be the (image of the) interior of Dn in X = (A qDn)/ ∼. We write X = A ∪φ en = A ∪ en.
We can attach infinitely many cells all at once:

X = (Aq (qλDn
λ)) / ∼= A ∪

(⋃
λ

enλ

)
,

Definition (CW complex). A CW complex is a Hausdorff space X with an increasing sequence of closed subspaces
X0 ⊂ X1 ⊂ X2 ⊂ · · · s.t. (i) X0 is a discrete set of points, (ii) for n ≥ 1, Xn is obtained from Xn−1 by attaching n-cells
enλ, (iii) X has the weak topology: S is closed in X if and only if S ∩Xn is closed in Xn, for all n ≥ 0.
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Theorem (closure-finite condition). The closure of each cell in a CW complex conains only finitely many cells of lower
dimensions.

Example. S∞ :=
⋃∞
n=0 S

n =
⋃∞
k=0 S

2k+1 is a CW complex with weak topology. Now we show S∞ is contractible: last
time we proved πk(Sn) = 0 for k < n.

Theorem: πk(S∞) = 0 ∀k.
(Proof: S∞ has the same homotopy type as the “telescope”, see te video lecture. It’s shown in the lecture that the

telescope defines a deformation retraction of the telescope to S∞. Next, it’s shown in the lecture that The telescope has a
projection to R: π : Telescope→ R. Since Sk is compact, (π ◦ f)(Sk) is compact in R, so is closed and bounded. So it lies
in [0, N ] for some N ∈ Z+. Thus, f(Sk) ⊂ π−1([0, N ]) = a finite telescope, ending in SN , which has the same homotopy
type as SN . One can choose N > k, Then f(Sk) is null-homotopic. This proves that πk(S∞) = 0 ∀k.)

This shows the CW complex S∞ is weakly contractible so is also contractible (by the corollary in the last lecture).

1.4 Lecture 4: Principal bundles

[Large part of the lecture is missing from the video.]

Definition (Principal G-bundle). A principal G-bundle is a fiber bundle π : P → B with fiber G and an open cover
{(U, φU )} of B s.t. (i) G acts freely on the right on P ; (ii) for each U , the fiber-preserving homeomorphism φU : π−1(U)→
U ×G, where G acts on the right on U ×G by (u, x)g = (u, xg), is G-equivariant.

Note that the base space B has trivial G action.

Definition (G-bundle map). Let P →M and E → B be two principal G-bundles. A morphism of principal G-bundles,
or a G-bundle map, from P →M to E → B is a morphism of fiber bundles

P E

M B

f

h

in which f : P → E is G-equivariant.

Definition (Pullback bundle). Let π : E → B be a fiber bundle with fiber F and h : M → B a continuous map. the
total space h∗E of the pullback bundle is defined as h∗E := ({(m, e) ∈ M × E|h(m) = π(e)}. Define the projections p1

and p2 of M × E to M and E, respectively, then the pullback bundle is a bundle that fits into the diagram

h∗E E

M B

p2

p1 π

h

.

Proposition. The first projection map p1 : h∗E →M , p1(m, e) = m, is a fiber bundle with fiber F .

(Suffices to show that the pullback h∗(U×F ) of a product bundle over U is a product bundle h−1(U)×F over h−1(U).

This is indeed true, as we have the isomorphism h∗(U × F )
'−→ h−1(U)× F given by (m,h(m), f) 7→ (m, f). )

Proposition (Universal property of the pullback). Given a bundle map
P E

M B

q2

q1 π
h

, there is a unique bundle map

φ : P → h∗E over M such that the following diagram commtes:

∃! P

h∗E E

M B

q2φ

q1

p2

p1 π

h

Cartan’s mixing space and diagram (§4.3):

Definition (Cartan mixing space). If α : P → B is a principle G-bundle, and M a left G-space. Then one can form
the mixing space (Borel construction) P ×GM := (P ×M)/G = (P ×M)/ ∼, where (p,m) ∼ (p,m) · g = (pg, g−1m). If
y = g−1m, then m = gy, so (p, gy) ∼ (pg, y).

4



Let [p,m] := equivalence class of (p,m).
Define τ1 : P ×GM → B by τ1([p,m]) = α(p). (τ1 is well defined: τ1([p,m]) = τ1([pg, g−1m]) = α(pg) = α(p).)

Proposition (4.5). τ1 : P ×GM → B is a fiber bundle with fiber M .

(The claim that the fiber is M can be rationalized by setting P to be a product bundle P = B × G, in which case
P ×GM ' (B ×G) ×GM ' B ×M so this is indeed a fiber bundle, with base space B and fiber M . For why we have
(B ×G)×GM = B ×M , see the proof below.)

[Proof: due to the local trivialization property of fiber bundle, we only have to prove the case for when P is a direct
product bundle: P = U × G. For U = B. (Otherwise we choose an open set U ⊂ B on which π−1(U) = U × G and
proceed in the same way.) We have τ−1

1 (U) = α−1(U) ×G M ' (U × G) ×G M = U ×M , completing the proof. Note
that here τ−1

1 (U) = α−1(U) ×G M follows from the definition of P ×G M ; α−1(U) ×G M ' (U × G) ×G M follows the
functoriality of (−)×GM , and (U ×G)×GM ' U ×M can be proven using the explicit map [(u, g),m] 7→ (u, gm) and
show that it has an inverse (u, gm) 7→ [(u, id), gm].]

This proposition can be nicely characterized by the Cartan’s mixing diagram:

P P ×M M

B P ×GM M/G,

α

π1 π2

β γ

τ1 τ2

(1.1)

where (by the hypothesis of the proposition) P → B is a principal bundle. On general setting, one can prove that if
P → B is a principal bundle then τ1 : P ×GM → B is a fiber bundle. Furthermore, the fact that the fiber is M (what’s
in the upper-right corner) comes from the fact that G acts freely on P ((i) in the definition of principal G-bundle).

Summary: in Cartan’s mixing diagram, if the vertical map P
α−→ B is a principal bundle, then the lower horizontal map

P ×GM
τ1−→ B is a fiber bundle, whose fiber is M in the far corner of the other square. This pattern will be repeatedly

used later.

Theorem (4.10). In the category of CW complexes, suppose G acts on the left on M , and E,E′ are weakly contractible
spaces on which G acts freely. Then E ×GM and E′ ×GM are weakly homotopy equivalent.

(This shows that equivalent cohomology is well-defined, independent of the contractible space on which G act freely
that you choose.)

1.5 Lecture 5: Universal bundles

In defining H∗G(M), we chose a contractible space E on which G acts freely.
Such a space is the total space of a universal bundle.

P h∗E E

X BG

'

h

Definition (Universal G-bundle). A universal G-bundle is a principal G-bundle EG → BG if (i) for any principle
G-bundle P over a CW complex X, ∃ a map h : X → BG s.t. P ' h∗(EG); (ii) if h0, h1 : X → B are two maps s.t.
h∗0(EG) ∼= h∗1(EG), then h0 and h1 are homotopic.

Theorem (Homotopic maps pull back to isomorphic bundles). If h0, h1 : X → B are homotopic, and E → B is a
principal G-bundle, then h∗0E ' h∗1E.

Let PB(X) = {isomorphism classes of principle G-bundles over X}. The above theorem says that: Fixing a universal
bundle EG→ BG, the map

ϕ : [X,BG]→ PG(X)

is well defined. Here [X,BG] = {homotopy classes of maps h : X → BG}.
(i) in the definition of universal G-bundle ⇔ surjectivity of ϕ.
(ii) in the definition of universal G-bundle ⇔ injectivity of ϕ.
So ϕ : [X,BG]→ PG(X) is a (set-theoretic) bijection.
(h : X → BG) 7→ h∗(EG).
PG(−) is a contravariant function on CW complexes; [,BG] is also a contravariant functor, and PG(−) = [−, BG] as

functors, i.e. PG(−) is a representable functor.

Definition (Classifying slace). BG is called a classifying space for G.
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Example. S∞ → CP∞, is a universal S1-bundle ( S∞ is contractible), i.e. ES1 = CP∞, and BS1 = CP∞.

Theorem. A principal G-bundle E → B is universal in the category of CW complexes if E is weakly contractible.
Grassmannian is the set of all planes in Eucliean space;
(Recall that every compact Lie group is a subgroup of the orthogonal group. All frames – called Stiefel variety. Replace

S∞ with the infinite Stiefel variety will give the unversal bundle for any compact Lie group.)

Example. π : R→ R/Z = S1 is a universal Z-bundle, i.e. EZ = R, and BZ = S1.

Below we want to show that equivariant cohomology is well defined.
Using the Cartan mixing diagram in Eq. (1.1), with P ≡ E: as E → B is a principal G-bundle, and M is a left

G-space, there we proved τ1 : (E ×M)/G→ B is a fiber bundle with fiber M .
E ×M → (E ×M)/G is a principal G-bundle.

Lemma. If E is a weakly contractible space on which G acts freely, and P → B is a principal G-bundle, then E×P/G ∼
P/G = B (have the same homotopy type).

(Proof: we have another Cartan’s mixing diagram

E E × P P

B E × P/G P/G

α

π1 π2

β γ

τ1 τ2

(1.2)

By homotopy exact sequence of a fiber bundle,
πk(E)→ πk(E × P/G)→ πk(P/G)→ · · · ,
we prove the lemma.)

1.6 Lecture 6: Equivariant cohomology, spectral sequences

First, continue the proof in the last lecture:

Fact [Hatcher, Pro 4.21] Weak homotopy equivalence f : X → Y (i.e. f∗ : πk(X,x0)
'−→ πk(Y, f(x0)), ∀k) induces an

isomorphism in homology f∗ : Hk(X,A)
'−→ Hk(Y,A) and cohomology f∗ : Hk(Y,A)

'−→ Hk(X,A) ∀ k and all coefficient
groups A.

Suppose E1 and E2 are contractible spaces on which G acts freely. So that E1 → E1/G, and E2 → E2/G are principal
G-bundles.

Let P = E2 ×M . We know E2 ×M → (E2 ×M)/G is a principal G bundle Applying lemma to E1 and P , we get
E1 × (E2 ×M)/G ∼ E2 ×M/G (weakly homotopy equivalent). By symmetry, E2 × (E1 ×M)/G ∼ E2 ×M/G. But
E1 × (E2 ×M)/G and E2 × (E1 × m)/G are homeomorphic (just exchanging coordiates), they are weakly homotopy
equivalent. Therefore E1 ×M/G ∼ E2 ×M/G. By [Hatcher, Prop 4.21), we have H∗(E1 ×M/G) ' H∗(E2 ×M/G) for
any coefficient.

This proves that equivariant cohomology is well defined, independent of the choice of E.
(For CW complexes, if two spaces are weakly homotopy equivalent, then they are homotopy equivalent (Whitehead

theorem).)
Now: spectral sequences
Spectral sequences: referred to as “less digestible aspect of algebraic topology” by Raoul Bott.
A differential group is a pair (E , d) where E is an abelian group and d : E → E is a group homomorphism s.t. d2 = 0,

so imd ⊂ kerd.
A spectral sequence is a sequence {(Er, dr)} of differential groups s.t. Er = H∗(Er−1, dr−1) for r ≥ 1.
We assume Er =

⊕
p,q∈ZE

p,q
r , and usually we assue Ep,qr = 0 for p < 0 or q < 0. dr : Ep,qr → Ep+r,q−r+1

r . This means,

for fixed (p, q), if r ≥ q+ 2, then dr is a zero map, then Ep,qr = Ep,qr+1 = Ep,qr+2 = · · · = Ep,q∞ , where we called the stationary
value Ep,q∞ .

(We have Er+1 = H∗(Er, dr) =
kerdr : Ep,q

r →E
p+r,q−r+1
r

imdr : Ep−r,q+r−1→Ep,q
r

)
A filtration on an abelian group M is a decreasing sequence of subgroups M = D0 ⊃ D1 ⊃ D2 ⊃ · · · , the associated

graded group of {Di} is GM = D0

D1
⊕ D1

D2
⊕+ · · ·

If E =
⊕

p,q∈Z,p,q≥0E
p,q then the filtration by p is Dp =

⊕
i≥p,q≥0E

i,q.
Leray’s theorem: see next lecture.
Let π : E → B be a fiber bundle with fiber F over a simply connected basis space B (the original spectral sequence is

more general and did not assume simply connectedness; here we assume simply connected for simplicity). Assume that
in every dimension n, Hn(F ) is of finite rank and free. Then ∃ a spectral sequence {Er, dr)}, with

Ep,q = Hp(B)⊗Hq(F ),
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and a filtration {Di} on H∗(E) s.t. E∞ =
⊕

p,q E
p,q
∞ ' GH∗(E), i.e.

1.7 Lecture 7: Computation using spectral sequence

Theorem (Leray’s theorem). Let π : E → B be a fiber bundle with fiber F over a simply connected base space B.
Assume Hn(F ) is free, of finite rank, for any n ≥ 0. Then there exists spectral sequence {(Er, dr)} with

Ep,q2 = Hp(B)⊗Hq(F ),

which is an equality as rings, and a filtration {Di} on H∗(E) s.t. E∞ = GH∗(E). Moreover, dr : Er → Er is an
antiderivation, i.e. dr(αβ) = (drα)β + (−1)deg ααdβ.

“A filtration {Di} on H∗(E) s.t. E∞ = GH∗(E)” means that there is a filtration H∗(E) = D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃
Dn ⊃ · · · , GH∗(E) = D0

D1
⊕ D1

D2
⊕ D2

D3
⊕ · · · . For each n, there is an induced filtrartion {Di ∩Hn} ⊂ Hn(E) := Hn s.t.

Hn(E) = (D0 ∩Hn) ⊃ (D1 ∩Hn) ⊃ (D2 ∩Hn ⊃) · · · , where E0,n
∞ = D0 ∩Hn/D1 ∩Hn, E1,n−1

∞ = D1 ∩Hn/D2 ∩Hn, ...
(Example: G ⊃ Z2 ⊃ 0, with G/Z2 = Z2, then G can still be Z4 or Z2 × Z2.)
(Lemma: If 0→ A→ B → C is an exact sequence of abelian groups, and C is free, then B ' A⊕ C.)

Example: H∗(CP 2). Use
S1 S5

CP 2

, the homotopy exact sequence→ π1(S1)→ π1(S5)︸ ︷︷ ︸
=0

→0−−→ π1(CP 2)
'−→ π0(S1)→

π0(S5) says π1(CP 2) = 0, so CP 2 is simply connected:
Then we can apply Leray’s theorem and we have E2 = H∗(CP 2)⊗H∗(S1).
We have H0(S1) = 〈1〉, and H1(S1) = 〈x〉, so the 0th column is E0,q

2 = H0(CP 2)⊗Hq(S1) = Z⊗Hq(S1) = Hq(S1),
where we used Z⊗A = A. So we have

E2 =

...
...

...
...

...
...

...
...

q = 2 0 0 0 0 0 0 · · ·
q = 1 x ? ? ? ? 0 · · ·
q = 0 1 ? ? ? ? 0 · · ·

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 · · ·

Considering the differentials, we have E3 = E4 = · · · = E∞ = GH∗(S5) = Z when the degree is 0 and 5, and vanishes
otherwise.

OnH5(S5), there is a filtrationH5(S5) = (D0∩H5) ⊃ (D1∩H5) ⊂ (D2∩H5) · · · · · ·D5∩H5) ⊃ 0, where E0,5
∞ = D0∩H5

D1∩H5 ,

E1,4
∞ = D1∩H5

D4∩H5 , E2,3
∞ = D2∩H5

D3∩H5 , and so on.

and we have H0(S4) = 〈1〉 and H4(S4) = 〈u〉, where all other degrees of H∗(S4) = 0. So we have

E3 =

...
...

...
...

...
...

...
...

q = 2 0 0 0 0 0 0 · · ·
q = 1 0 0 0 0 Z 0 · · ·
q = 0 Z 0 0 0 0 0 · · ·

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 · · ·

Using d2, we see that there must be a u in the (p, q) = (2, 0) entry. Using the tensor product structure, we know that
(p, q) = (2, 1) entry has ux. Again using d2 we see that there must be a u2 in the (p, q) = (4, 0) entry, then the tensor
product structure says there’s a u2x in the (p, q) = (4, 1) entry. So we have

E2 =

...
...

...
...

...
...

...
...

q = 2 0 0 0 0 0 0 · · ·
q = 1 x 0 ux 0 u2x 0 · · ·
q = 0 1 0 u 0 u2 0 · · ·

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 · · ·

So
H∗(CP 2) = Z⊕ Zu⊕ Zu2 = Z[u]/(u3).

7



1.8 Lecture 8: Equivariant cohomology of S2 under rotation

G = S1, M = S2, where G acts on M as a rotation along the polar axis. We want to compute

H∗S1(S2) = H∗((S2)S1) = H∗((ES1 × S2)/S1) = H∗(S∞ ×S1 S2).

By Cartan’s mixing diagram, we have

S∞ S∞ × S2 S2

CP∞ S∞ ×S1 S2 S2/S1

(1.3)

there is a fiber bundle

M MG

BG

=

S2 S∞ ×S1 S2

CP∞

Fact: H∗(CPn) = Z[u]/(un+1), then H∗(CP∞) = Z[u].
By Leray, Ep,q2 = Hp(CP∞)⊗Hq(S2)

E2 =

q = 3 0 0 0 0 0 0 0 · · ·
q = 2 y 0 uy 0 u2y 0 u3y · · ·
q = 1 0 0 0 0 0 0 0 · · ·
q = 0 1 0 u 0 u2 0 u3 · · ·

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 · · ·

Let’s easy to see that d2 = d3 = 0, as well as the differential on later pages. So E2 = E3 = · · · = E∞.
This shows that E∞ = GH∗((S2)S1), with

H0((S2)S1) = Z, H1((S2)S1) = 0, H2((S2)S1) = (D0 ∩H2) ⊃ (D1 ∩H2) ⊃ (D2 ∩H2) ⊃ 0,

where E0,2
∞ = D0∩H2

D1∩H2 = Zy, E1,1
∞ = D1∩H2

D2∩H2 = 0, and E2,0
∞ = D2∩H2

D3∩H2 = Zu, therefore we have an exact sequence

0→ Zu→ H2 → Zy → 0,

Since Zy is free, H2((S2)S1) = Zu⊕ Zy.
Then we have H3((S2)S1) = 0, and H4((S2)S1) = Zuy ⊕ Zu2.
In general, Hodd((S2)S1) = 0, H2n((S2)S1) = Zun−1y ⊕ Zun.
So

H∗S1(S2) = Z[u]⊕ Z[u]y = Z[u, y]/(y2 = auy + bu2), (1.4)

for some a, b. where deg u = deg v = 2, as abelian groups.
[We will find the coefficients a, b in Lecture 29, after introducing the Borel localization theorem.]
We will compute the cohomology of the space (S2)S1 directly in the next lecture. Before that, let’s introduce some

general results:

Theorem. If G acts on M with at least one fixed point, then H∗(BG) injects into H∗G(M).

Proof (This was actually done in lecture 10): The inclusion map i : {p} ↪→ M is a G-map if p is a fixed point. Let
π : M → {p} be the constant map. Then π ◦ i = I : {p} → {p}. By functoriality (see lecture 10), i∗G ◦π∗G = I∗ : H∗G({p})→
H∗G(M)→ H∗G(({p}), hence π∗G : H∗G({p}) = H∗(BG)→ H∗G(M) is injective.

We need to develop some tools to figure out what the ring structure is.
General theorems about equivariant cohomology:
N , M be left G-spaces. If f : N →M is equivariant, then there is an induced map fG : NG →MG, given by
EG×N → EG×M , gives [e, n) 7→ [e, f(n)],
EG×G N → EG×GM , [eg, g−1n] 7→ [eg, f (g−1n)] = [eg, g−1f(n)],
Consider f : M → pt, which is G-equivariant.

ptG = EG× pt/G = EG/G = BG. fG induces a map in cohomology

H∗(ptG) H∗(MG)

= =

H∗(BG) H∗G(M)

,
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This makes H∗G(M) into an H∗(BG)-module, so H∗G(M) is an H∗(BG)-algebra.
BG is the base of a universal bundle EG→ B for G, and is called the classifying space for G.
Examples: BS1 = CP∞, BZ = S1.
Example BO(k)?

Definition (Stiefel varieties). V (k, n) = {orthonomal k frames in Rn}; k-frame is an ordered set of k-linear indepen-
dent vectors. A k-frame spans a k-plane.

So there exists a map V (k, n)
G−→ (h, n), whose fiber is all the orthogonal bases of a k-plane, i.e. fiber = O(k).

V (1, n) = {unit vectors in Rn} = Sn−1

G(1, n) = RPn−1

1.9 Lecture 9: General properties of equivariant cohomology

Proposition. If a topological group G acts freely on a topological space M s.t. M →M/G is a principal G-bundle, then
MG is weakly homotopy equivalent to M/G.

(Recall that action is free ⇔ any point has trivial stabilizer group; weakly homotopy equivalent ⇔ homotopy group
agree at all degrees.)

Proof: By Cartan’s mixing diagral,

EG EG×M M

BG MG M/G

Since M → M/G is a principal G-bundle, MG → M/G is a fiber bundle with fiber EG. Then, by the homotopy exact

sequence of the fiber bundle, · · · → πk(EG)︸ ︷︷ ︸
=0

→ πk(MG)
'−→ πk(M/G)→ πk−1(EG)→ · · · where πk(EG) = 0 (for k > 0)

as EG is contractible.

Example. S1 acts on S1 by λ · x = λx, where λ, x ∈ S1 ∈ C. For each x ∈ S1, λx = x ⇒ λ = 1, i.e. the action is free.
Then, the proposition above says that (S1)S1 is weakly homotopy equivalent to S1/S1 = pt.

To further show that (S1)S1 is homotopy equivalent to S1/S1 = pt (using Whitehead’s theorem), we need to show
that (S1)S1 is a CW complex. We have (S1)S1 = (ES1 × S1)/S1 = (S∞ × S1)/S1 → S∞, by [e, s] 7→ es which has an
inverse map [e] 7→ [e, 1] (so [e, s] 7→ [es] 7→ [es, 1] = [e, s], so (S1)S1 = S∞, which is a CW complex, so by Whitehead’s
theorem (S1)S1 has the homotopy type of a point.

Example. Now, going back to the example in the last lecture, (S2)S1 . By the Cartan’s mixing diagram in (1.3), the
homotopy quotient (S2)S1 → BS1 = CP∞ is a fiber bundle with fiber S2.

Another picture: The orbit space is S2/S1 = [−1, 1]; if we take out the north and south poles p, q, then the action of
S1 on S2 − {p, q} = (−1, 1)× S1 is free.

So we set S2 = {p} q (S2 − {p, q})q {q}.
We have (S2 − {p, q})S1 = ((−1, 1) × S1)S1 = (−1, 1) × (S1)S1 = (−1, 1) × S∞ (because S1 acts trivially on (−1, 1)

and we just proved above that (S1)S1 = S∞), has the homotopy type as (−1, 1).
Then, {p}S1 = (ES1 × {p})/S1 ' (ES1)/S1 = BS1 = CP∞.
Therefore (S2)S1 = {p}S1 q (S2 − {p, q})S1 q {q}S1 = CP∞ q (−1, 1) × S∞ q CP∞ “a dumbbell”) has the same

homotopy type as CP∞ ∨ CP∞ (“two CP∞’s joining at one point).
[The fiber above p and q is CP∞, and the fiber over (−1, 1) is S∞.]
Cohomology of X := CP∞ q (−1, 1)× S∞ q CP∞: use the Mayer–Vietoris sequence. Set U = CP∞ q (−1, 1/2) and

V = (−1/2, 1)q CP∞,
We have
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X U q V U ∩ V

H4 Z⊕ Z Z⊕ Z · · · · · ·

H3 0 0 0

H2 Z⊕ Z Z⊕ Z 0

H1 0 0⊕ 0 0

H0 Z Z⊕ Z Z

i∗ j∗

i∗ j∗

d∗

i∗ j∗

d∗

i∗ j∗

d∗

i∗ j∗

d∗

(from H∗(CP∞) = Z[u] where u is a degree-2 element.)
So we have

Hk(X) =

 Z for k = 0,
0 for k odd,
Z⊕ Z, for k even

Last time we showed that Hk((S2)S1) = Z[u]⊕ yZ[u], where deg(u) = deg(y) = 2.

Functoriality:
G-map = G-equivariant map.
A G-map f : N →M of G-spaces induces fG : NG →MG.
(Let’s show that the map fG is well defined: NG = EG × N/G, MG = (EG ×M)/G, by sending [e, n] 7→ [e, f(n)].

But sine [e, n] = eg, g−1n] 7→ [eg, f(g−1n)] = [eg, g−1f(n)],
Hence, fG further induces a ring homormophism in cohomology

f∗G : H∗(MG)→ H∗(NG)

where

N M

pt

f

;
NG MG

ptG = BG

fG

πN πM
;

H∗G(N) H∗G(M) ∈ x

H∗(BG) ∈ u

f∗G

β α
(1.5)

α and β give the algebra structure, where elements of H∗(BG) serve as scalars:
For any u ∈ H∗(BG) and x ∈ G∗H(M), we have f∗G(u · x) = f∗G(α(u)x) = f∗G(α(u))f∗(x) = β(u)f∗G(x) = u · f∗G(x).

This shows that f∗G is a H∗(BG)-homomorphism, i.e. H∗(BG) is the scalar in the algebra.
So: f∗G : H∗B(M)→ H∗B(N) is an H∗(BG)-algebra homomorphism.
Hence, H∗G(−) is a contravariant functor from {G-spaces, G-maps} to {H∗(BG)-algebras, H∗(BG)-homorphisms}.
It is the composition of two functors: H∗G(−) = (−)∗ ◦ (−)G.

1.10 Lecture 10: Functoriality

Proposition. Let f : N →M be a G-map of G-spaces.
(i) f injective ⇒ fG : NG →MG is injective.
(ii) f surjective ⇒ fG is surjective.
(iii) If I : M →M is the identity, then IG : MG →MG is the identity.
(iv) (h ◦ f)G = hG ◦ fG.
(v) If f : N →M is a fiber bundle with fiber F , then fG : NG →MG is also a fiber bundle with fiber F .
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(Proof: (i)-(iv) is straightforward so we only show (v): From (1.5), NG → BG is a fiber bundle over N ; MG → BG is
a fiber bundle over M . So every point b ∈ BG has a neighborhood U over which π−1N(U) ' U ×N , π−1

M (U) ' U ×M .
fG : NG →MG is locally U ×N → U ×M , which is locally trivial with fiber F .)

Classifying spaces:

Example. Z2 on Sn by the antipodal map: Sn → RPn is a principal Z2-bundle,

S1 S2 S3 · · ·

RP 1 RP 2 RP 3 · · ·

let S∞ =
⋃∞
n=1 S

n, RP∞ =
⋃∞
n=1 RPn, there is a Z2-action on S∞ with quotient RP∞, because S∞ is contractible, so

S∞ → RP∞ is the universal Z2-bundle. And BZ2 = RP∞.

Closed subgroups:
Let H ⊂ G be a closed subgroup of a topological group G. If G acts freely on EG, then so does H. Let B = EG/H.
Proposition: Then EG→ B is locally trivial with fiber H.
(Proof: Since EG → BG is locally trivial it is locally U × G. So EG/H is locally (U × G)/H = U × (G/H), so

EG→ EG/H is locally U ×H → U × (G/H),
Theorem (Frank Warner’s book, Foundations of Differentiable Manifolds and Lie Groups). If H is a closed subgroup

of Lie group, then G→ G/H is a principle H-bundle.
This means that locally, G→ G/H becomes V ×H → V for some open set V ∈ G/H.
Therefore U ×G → U × (G/H) is locally U × V ×H → U × V , so EG → EG/H is locally trivial with fiber H. We

can take BH = EG/H.
This implies that if we have a universal bundle for a Lie group, then we have the universal bundle for any of its closed

subgroup, i.e. the following theorem

Theorem. If a Lie group G has a universal bundle EG → BG, then any closed subgroup has a universal bundle
EG→ EG/H.

Theorem. If πi : EGi → BGi are universal bundle for i = 1, 2, then π1 × π2 : EG × EG2 → BG1 × BG2, (e1, e2) 7→
(π1(e1), π2(e2)) is a universal bundle for G1 ×G2.

(Proof by definition: (g1, g2)(e1, e2) = (e1, e2) ⇔ g1e1 = e1, g2e2 = e2 ⇔ g1 = 1, g2 = 1, so G1 × G2 acts freely on
EG1 × EG2. (π1 × π2)−1(b1, b2) = {(e1, e2)|e1 ∈ π−1(b1), e2 ∈ π−1(b2)} = G1 ×G2.)

Corollary: B(G1 ×G2) = BG1 ×BG2. (Here equality is in the sense of up to homotopy equivalence.)

Example. A torus T is S1 × · · · × S1, therefore BT = BS1 × · · · ×BS1 = CP∞ × · · · ×CP∞. By the Künneth formula,
H∗(BT ) = H∗(BS1)⊗ · · · ⊗H∗(BS1) = Z[u1]⊗ · · · ⊗ Z[un] = Z[u1, ..., un] ( Since H∗(CP∞) is free abelian).

Well known theorem: Every compact Lie group can be embedded as a closed subgroup of some orthogonal group O(k).
A universal bundle for O(k):
Let V (k, n) = {orthonormal k frames in Rn} = {n× k matrices|columns are orthonormal}, can multiply on the right

by A ∈ O(k). A k-frame in Rn spans a k-plane in Rn, and multiplying on the right by A is just changing the basis. So
the quotient V (k, n) by O(k) is the Grassmannian G(k, n).

Fact: V (i, n)→ G(k, n) is a principal O(k)-bundle.
Then we have

V (k, n) V (k, n+ 1) V (k, n+ 2) · · ·

G(k, n) G(k, n+ 1) G(k, n+ 2) · · ·

Let V (k,∞) =
⋃∞
n=k V (k, n), G(k,∞) =

⋃∞
n=kG(k, n). Then V (k,∞) is weakly contractble; and in fact it is a CW

complex so it is contractible.
Therefore, V (k,∞)→ G(k,∞) is the universal O(k)-bundle. From this , we arrive at

Theorem. Every compact Lie group G has a universal bundle.

Starting from next time, we will assume all the topological spaces are smooth manifolds and the groups are Lie groups;
and we will show equivariant cohomology can be computed using differential forms. This will give us the ring structure
of H∗S1(S2), which we have not fully determined yet.
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1.11 Lecture 11: Review of differential geometry

New chapter today: use differential forms to calculate equivariant cohomology.
de Rham theorem: IfM is a C∞ manifold, and Ω∗(M) = {C∞ differential forms on M}, thenH∗(M ;R) ' H{Ω∗(M), d},

where H∗(M ;R) is singular cohomology, and Ω∗(M) is de Rham complex.
Equivariant de Rham theorem: if a Lie group G acts smoothly on a manifold M , then H∗G(M ;R) ' H∗{Ω∗G(M), D},

where H∗G(M ;R) is singular equivariant cohomology, and Ω∗G(M) is called Cartan complex of equivariant differential
forms.

Lie derivative of a vector field:
Let X,Y ∈ X(M) = {C∞ vector field on M}, p ∈M , X has an integral curve ϕt(p) through p:
ϕt(p) : (−ε, ε)→M , ϕ0(p) = p, d

dtϕt(p) = Xϕt(p),

Actually, ∃ε > 0, and a neighborhood U of p in M , s.t. ϕ : (−ε, ε)×U →M and ϕ0(q) = q, ∀q ∈ U , d
dtϕt(q) = Xϕt(q),

ϕt : U → ϕt(U) ⊂M . And we have ϕt ◦ ϕs = ϕt+s, ϕt : U → ϕt(U), have inverse ϕ−t : ϕt(U)→ U .

Definition (Lie derivative of a vector field). (LXY )p := lim
t→0

(ϕ−t)∗Yϕt(p)
−Yp

t = d
dt (ϕ−t)∗Yϕt(p) ∈ TpM .

Lie derivative of a differential form:

Definition (Lie derivative of a differential form). Let ω ∈ Ωk(M). (LXω)p = lim
t→0

ϕ∗tωϕt(p)
−ωp

t .

Recall if v1, ..., vk ∈ TpM , then
(
ϕ∗tωϕt(p)

)
(v1, ..., vk) := ωϕt(p) (ϕt∗v1, ..., ϕt∗vk).

Definition (Lie derivative of a function). (LX) f = lim
t→0

f(ϕt(p))−f(p)
t = Xpf .

Theorem. LXY = [X,Y ].

(The proof is a somewhat messy computation.)
Interior multiplication on a vector space: Let V be a vector space. A k-covector on V is an alternating k-linear function

on V : α : V × · · · × V → R.
We write α ∈ Ak(V ) = Λk(V ∨).
Def. If v ∈ V , then ιvα ∈ Λk−1(V ∨), ιvα)(v1, ..., vk−1) = α(v1, ..., vk−1). We have ((ιv ◦ ιv)α)(v1, ..., vk−2) =

(ιvα)(v, v1, ..., vk−2) = α(v, v, v1, ..., vk−2) = 0.

Definition (Interior multiplication on a manifold). If X ∈ X(M), ω ∈ Ωk(M), Y1, ..., Yk−1 ∈ X(M), then
(ιXω)(Y1, ..., Yk−1) = ω(X,Y1, ..., Yk−1).

Definition (Derivation, self-defined). A map D : Ω∗(M)→ Ω∗(M) is a derivation if D(ω ∧ τ) = (Dω) ∧ τ + ω ∧Dτ

Theorem (Properties of LX). Theorem (i) LX : Ω∗(M)→ Ω∗(M) is a derivation of degree 0. (Derivation means that
LX(ω ∧ τ) = (LXω) ∧ τ + ω ∧ LXτ).

(ii) LX commutes with d: LX · d = d ◦ LX .

(iii) (Product formula) if ω ∈ Ωk, LX(ω(Y1, ..., Yk)) = (LXω)(Y1, ..., Yk) +
∑k
i=1 ω(Y1, ...,LXYi, ..., Yk).

Theorem (Properties of LX and ιX). (i) ιX : Ω∗(M)→ Ω∗(M) is an antiderivation of degree-1: ιX(ω ∧ τ) = (ιXω)∧
τ + (−1)deg ωω ∧ ιXτ ,

(ii) ιX ◦ ιX = 0
(iii) (Cartan’s homotopy formula) LX = dιX + ιXd.
(iv) ιX : Ω∗(M)→ Ω∗(M) is F-linear: ιX(fω) = fιXω for f ∈ C∞(M) = F . (But LX is not F linear, as LX(fω) =

(LXf)ω + fLXω.)

1.12 Lecture 12: Basic forms and invariant forms

Let G be a Lie group, π : P →M a C∞ principal G-bundle.
π : P →M is surjective, so π∗ : TpP → Tπ(p)M is also surjective, π∗ : Ω∗(M)→ Ω∗ is unjective.

Definition (Basic form). π∗Ω∗(M) ⊂ Ω∗(P ) is called the subspace of basic forms.

Example: π : R2 → R, (x, y) 7→ x
r · (x, y) = (x, y + r), ω ∈ Ω1(R2) is f(x, y)dx+ g(x, y)dy.
The basic 1-forms are π∗(h(x)dx) = π∗(h(x))π∗(dx) = π∗(h(x))dx.
ω = fdx+ gdy is basic if and only if g = 0 and f(x, y) does not depend on y.
(i)ι∂yω = ι∂y (fdx+ gdy) = fι∂ydx+ gι∂ydy = g, where we used ι∂ydx = dx(∂y) = ∂x

∂y = 0, and ι∂ydy = 1.
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(ii) L∂yω = L∂y (fdx + gdy) = (∂∂yf)dx + fL∂ydx + (L∂yg)dy + gL∂y (dy) = ∂f
∂y dx + ∂g

∂ydy, where we used L∂ydx =

d(L∂yx) = d(0) = 0, and L∂ydy = d(1) = 0. We see that if g = 0 is already guaranteed by ι∂yω = 0, then L∂yω further
guarantees that ∂yf(x, y) = 0, i.e. f(x, y) does not depend on y. So we have the following proposition:

Proposition. ω = fdx+ gdy ∈ Ω1(R2) is basic for π : R2 → R, if and only if ι∂yω = 0 and L∂yω = 0.
Now, our task is how to generalize this proposition to an arbitrary principal G-bundle.
Vertical vectors on a principal bundle:
Let π : P →M be a principal G-bundle, and p ∈ P . Then π∗ : TpP → Tπ(p)(M).

Definition (Vertical vector). Vp := {vertical tangent vectors at p} := kerπ∗.

An element A ∈ g gives a curve etA ∈ G. Then etA defines a curve in M .

Definition (Ap). If G acts on M smoothly on the left, and A ∈ g, the Lie algebra of G, for p ∈M , define the vector field

at p, Ap = d
dt

∣∣∣
t=0

e−tA · p. (If G acts on M on the right then the definition changes to Ap = d
dt

∣∣∣
t=0

etA · p.)

Theorem: [A,B] = [A,B] for A,B ∈ g. (This sign convention agrees with the sign convention above. Also note that
[A,B] is the lie bracket, whereas [A,B] is the commutator for vector fields.)

Theorem. A is a C∞ vector field on M .

Theorem (Integral curve). The integral curve of A through p ∈M is ϕt(p) = e−tA ·p. (Colloquially, “left multiplication
by e−tA”.)

(Proof. We need to show d
dtϕ(t) = Aϕt(p)

for all t. ( ddtϕt(p) = d
ds |s=0e

−(t+s)A · p = Ae−tA·p = Aϕt(p)
.)

Theorem. Ap is a vertical vector.

Fix p ∈ P and define jp : G → P by g 7→ p · g. Then jp∗ : TeG = g → TpP is given by jp∗(A) = d
dt

∣∣∣
t=0

jp(e
tA) =

d
dt

∣∣∣
t=0

p · etA = Ap.

Then π∗(Ap) = π∗jp∗(A) = (π ◦ jp)∗(A) = 0 (π ◦ jp = π(p), a constant map), so A is a vertical vector field.
Invariant forms:
Recall that a basic form on P for a principal bundle π : P →M is π∗ω for some ω ∈ Ω∗(M).
We have r∗g(π∗ω) = (π ◦ rg)∗ω = π∗ω.
((π ◦ rg)(p) = π(pg) = π(p).)
If G acts on M on the left, each g ∈ G defines a differential lg : M →M .

Definition (Invariant form). A form ω ∈ Ω∗(M) is G-invariant if l∗gω = ω for all g ∈ G.

So a basic form on P for π : P →M is G-invariant.

Theorem (Characterization of invariant forms). Assume G connected, and acts on M . Then ω ∈ Ω∗(M) is G-
invariant if and only if LAω = 0 for all A ∈ g, the Lie algebra of G.

Proof. First prove “⇒”: If ω is G-invariant, then l∗gω = ω for all g ∈ G. This implies ρ∗e−itAω = ω, for any A ∈ g.

This is the same as ϕ∗t (ω), LAω = d
dt

∣∣∣
t=0

ϕ∗tω = d
dt

∣∣∣
t=0

ω = 0.

The “⇐” part of the prove will be given in the next lecture.

1.13 Lecture 13: Basic forms

Today we want to characterize basic forms using differential forms.
The homotopy quotient MG is the base space of a principal G-bundle EG ×M → MG. Let G be a Lie group. We

work in the C∞ category.
Definition of invariant forms – see last lecture.
Continue the proof in the last lecture: ⇐: suppose LAω = 0.
Let p ∈M . An integral curve of A through p is ϕt(p) = e−tA · p = le−tA(p).

We have LAω = 0 ⇒ (LAω)p = d
dt

∣∣∣
t=0

(ϕ∗tω)p = d
dt (l
∗
e−tAω)p = 0, define h(t) := (l∗e−tAω)p : R → Λk(T ∗p (M)) is

constant. (Here we have assumed that ω is a k-form.) We want to show h(t) = h(0) = ωp is constant.
h′(t) = d

ds

∣∣
s=0

l∗
e−(t+s)Aω = d

ds

∣∣
s=0

l∗e−tA

(
l∗e−sAω

)
e−tA·p = l∗e−tA

d
ds

∣∣
s=0

(
l∗e−sAω

)
e−tA·p (the pullback of differential forms

commutes with d
ds because l∗e−tA is linear.) But we have d

ds

∣∣
s=0

(
l∗e−sAω

)
e−tA·p = (LAω)e−tAp = 0, so h′(t) = 0, h(t) = ωp

is constant. Since G is connected, G is generated by any neighborhood of the identity. ∃ a neighborhood U of the identity
s.t. e(−) : g→ G is a diffeomorphism on U , so every g ∈ G is a product of finitely many exponentials
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Thus (l∗gω)p = ωp for all g ∈ G, p ∈M .
Vertical vectors: let π : E →M be a fiber bundle with fiber F . p ∈ E, then π∗ : TpE → Tπ(p)M is surjective.
In last lecture we defined the set of vertical vectors at p to be kerπ∗ := Vp.
We have also defined jp and jp∗, which acting on A gives the fundamental vector field: (jp)∗(A) = Ap ∈ Vp.
This defines a map (jp)∗ : g→ Vp.

Lemma. Let A ∈ g. Then Ap = 0 if and only if p is a fixed point of the curve {etA ∈ G}.

Proof: “⇐”: Ap = d
dt

∣∣
t=0

p ·etA = d
dt

∣∣
t=0

p = 0 (if p is a fixed point of etA. “⇒”: suppose Ap = 0, an integral curve of A

through p is ϕt(p) = p · etA. Let c(t) = p. Then c′(t) = 0 = Ap = Ac(t), so that c(t) is another integral curve of A through

p. By the uniqueness of integral curves, ϕt(p) = p for all t ∈ R, i.e. p · etA = p for all t ∈ R. If (jp)∗(A) = Ap = 0, then p

is a fixed point of etA, so Stab(p) ⊃ {etA|t ∈ R}. Since P is a principal bundle, G acts freely on P , so Stab(p) = {1}, so
{etA|t ∈ R} = {1}, hence A = 0. So (jp)∗ : g→ Vp is injective.

Since dimg = dimG = Vp, (jp)∗ is an isomorphism.
Horizontal forms:
Let π : E →M be a fiber bundle.

Definition (Horizontal form). A form ω ∈ Ω∗(E) is horizontal if at any p ∈ E, ιYpω = 0, ∀Yp ∈ Vp.

Basic forms are horizontal: if ω = π∗(τ) ∈ Ωk(E) and v1, ..., vk−1 ∈ Tp(E), then (ιYp
ω)(v1, ..., vk−1) = ω(Yp, v1, ..., vk−1) =

(π∗T )p(Yp, ...) = Tπ(p)(π∗Yp, ...) = Tπ(p)(0, ...) = 0.

1.14 Lecture 14: Basic forms, ring structure on H∗(E).

Characterization of basic forms:

Theorem (Basic ⇔ invariant + horizontal). Let G be a connected Lie group, and π : P →M a principal G-bundle.
A form ω ∈ Ωk(P ) is basic if and only if it is horizontal, i. ιAω = 0, and LAω = 0 for all A ∈ g.

Proof: “⇒” has been done in the last lecture. Now, “⇐”: Suppose ιAω = 0, and LAω = 0 for all A ∈ g, since G is
connected, ω is G-invariant, let m ∈M , w1, ..., wk ∈ TmM , pick any p ∈ π−1(m) ⊂ P , and v1, ..., vk ∈ TpP , s.t. π∗vi = wi,
for all i. Then define τm(w1, ..., wk) = ωp(v1, ..., vk). Then ω = π∗τ , because

τm(w1, ..., wk) = τm(π∗v1, ..., π∗vk) = (π∗τ)p(v1, ..., vk), (1.6)

therefore we have found the form downstars on M . To show that it is a basic form, we still need to show that the form
is well-defined, i.e. we need to show that τ is independent of the choice of vi and p:

prove independence of vi: suppose v′1 ∈ TpP is another vector s.t. π∗v
′
1 = w1 = π∗v1, then π∗(v

′
1 − v1) = 0,

so v′1 − v1 is vertical, so v′1 − v1 = Ap for some A ∈ g. Since ιAω = 0, 0 = ωp(Ap, v2, ..., vk) = ωp(v
′
1, v1, v2, ..., vk), so

ωp(v
′
1, v2, ...) = ωp(v1, v2, ...), showing that the definition (1.6) is independent of the choice of v1, and simiarly independent

of the choice of v2, v3, ....
Then prove independence of point: suppose p′ ∈ π−1(m) is another point in P above m. Then because G acts freely

and transitively, so p′ = pg for some g ∈ G. Let v′1, ..., v
′
k ∈ Tp′P s.t. π∗v

′
i = wi, then ωp′(v

′
1, ..., v

′
k) = ωpg(v

′
1, ..., v

′
k) =

(r∗g−1ω)pg(v
′
1, ..., v

′
k) (because ω is G-invariant), so ωp′(v

′
1, ..., v

′
k) = r∗g−1(ωpgg−1)(v′1, ..., v

′
k) = ωp(rg−1∗v

′
1, ..., rg−1∗v

′
k), since

π∗rg−1∗v
′
i = π∗v

′
i = wi, so ωp′(v

′
1, ..., v

′
k) = ωp(v1, ..., vk). This shows that the definition (1.6) is independent of the choice

of p ∈ π−1(m).
Thus τ is well-defined, and ω = π∗τ is basic.
[Summary of lecture 12-14: an element is basic (meaning that it comes from the base) iff it is horizontal and invariant.

If the group G is connected, it is invariant if and only if its Lie derivative is zero with respect to all vertical vector fields.]
Ring structure on H∗(E):
Product structure on associated graded module: Let π : E → B be a fiber bundle with fiber F . Let H∗(−) be

cohomology with coefficients in any commutative ring R with identity 1.
Leray’s theorem: There is a filtration H∗(E) = F0 ⊃ F1 ⊃ F2 ⊃ · · · so that multiplication in H∗(E) induces a map

Fk × Fl → Fk+l.
It follows that Fk × Fl+1 → Fk+l+1, and Fk+1 × Fl → Fk+l+1, therefore there is an induced map

Fk
Fk+1

× Fl
Fl+1

→ Fk+l

Fk+l+1
,

This is the product structure on GH∗(E) =
⊕∞

k=0
Fk

Fk+1
.

Theorem (Spectral sequence of a filtered complex). E∞ ' GH∗(E) as isomorphic rings.
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See Lecture 22 and 23 of the Bott-Tu notes.
Example: Cohomology ring of U(2).
U(2) acts on C2: it preserves the unit sphere S3 ⊂ C2.
U(2) acts transitively on S3; Stab((1, 0)) ' S1. By the orbit-stabilizer group, U(2)/U(1) ' Orbit((1, 0)) = S3 (as

U(2) acts on S3 transitively). Since U(1) is a closed subgroup of the Lie group U(2), there is a fiber bundle

U(1) U(2)

S3

.

Since S3 is simply connected, we have
E2 = H∗(S3)⊗H∗(S1),

we have the spectral sequence

E2 =

q = 2 · · · · · · · · · · · · · · · · · ·
q = 1 x̄ 0 0 x̄ȳ 0 · · ·
q = 0 1 0 0 ȳ 0 · · ·

p = 0 p = 1 p = 2 p = 3 p = 4 · · ·

,

where all the · · · are zero entries. All the differentials d2 are forced to zero. Using E2 = · · · = E∞ = GH∗(U(2)).
H0(U(2)) = Z · 1,
H1(U(2)) = F 1

0 ⊃ F 1
1 ⊃ F 1

2 = 0, where F 1
0 /F

1
1 = Zx, F 1

1 /F
1
2 = 0, so F 1

1 = 0, and H1(U(2)) = F 1
0 = Zx̄. (since x̄ is

actually in H1(U(2)), we will write x = x̄.)
Similarly, ȳ ∈ H3(U(2)), and x̄ȳ ∈ H4(U(2)), so we can write y = ȳ, and xy = x̄ȳ. So we get

Hk(U(2)) =


R · 1 k = 0
R · x k = 1
R · y k = 3
R · xy k = 4
0 otherwise

= R(x, y)/(x2, y2, xy + yx) = Λ(x1, x2),

where R(x, y) is the free algebra generated by x, y, and Λ(x1, x2) is the free exterior algebra defined as follows: Λ(x1, ..., xk) =
R(x1,...,xk)

(xixj−(−1)degxi·degxjxjxi)
.

1.15 Lecture 15: Vector-valued forms

Let’s assume all vector spaces are finite dimensional and are over R.
A k-covector on a vector space T is a k-linear alternating function T k = T × T︸ ︷︷ ︸

k times

→ R.

Let V be a vector space. A V -valued k-covector on T is a k-linear alternating function f : T × T︸ ︷︷ ︸
k times

→ V .

By the universal orpoerty of ΛkT ,

ΛkT

T k V

∃! linear f̃

f

Notation: Ak(T, V ) = {V -valued k-covectors} ' Hom(ΛkT, V ) ' (ΛkT )∨ ⊗ V ' (ΛkT∨) ⊗ V , where the last two
follows from linear algebra.

Def. A V -valued k-form on a manifold M is a function that assigns to each p ∈ M a V -valued k-covector in
(ΛkT ∗pM)⊗ V , i.e. it is a section of the bundle (ΛkT ∗M)⊗ V .

Notation. Ωk(M ;V ) = {C∞ V -valued k-forms}. If e1, ..., en is a basis for V , and ω ∈ Ωk(M ;V ), v1, ..., vk ∈ TpM ,
then ωp(v1, ..., vk) =

∑n
i=1 ω

i
p(v1, ..., vk)ei, i.e. ω =

∑
ωiei, where ωi are R-valued k-forms on M .

Def. dω =
∑

(dωi)ei if ω =
∑
ωiei.

(This definition is independent of the basis e1, ..., en.)
g-valued forms:
Let g be a finite dimensional Lie algebra, ω ∈ Ωk(M ; g) and τ ∈ Ωl(M, k).
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Def. [ω, τ ](v1, ..., vk, vk+l) =
∑

(k,l)-shuffles σ∈Sk+l
sgn(σ)

[
ωp(vσ(1),...,σ(k))τp(vσ(k+1), ..., vσ(k+l))

]
, here (k, l)-shuffles de-

note the σ satisfying (σ(1) < · · ·σ(k), σ(k + 1) < · · · < σ(k + l).
Example. If ω, τ ∈ Ω1(M, g), then [ω, τ ](X,Y ) = [ω(X), τ(Y )]− [ω(Y ), τ(X)].
Proposition. If X1, ..., Xn is a basis for the Lie algebra g, and ω =

∑
ωiXi, τ =

∑
τ jXj , then (i) [ω, τ ] =

∑
ωi ∧

τ j [Xi, Xj ].
(ii) [τ, ω] = (−1)(degω)(degτ)+1[ω, τ ] (note the extra plus one in the sign). (iii) d[ω, τ ] = [dω, τ ] + (−1)degω[ω, dτ ].
gl(n,R)-valued forms:
gl(n,R) has two multiplications: [−,−] and matrix product.
A basis for gl(n,R) is {eij}1≤i,j≤n, where eij is the n× n matrix with 1 in the (i, j) position, and zero anywhere else.
We have eijehl = δjkeil,
Def. If ω =

∑
ωijeij and τ =

∑
τklekl, then we define ω ∧ τ =

∑
ωij ∧ τkleijekl =

∑
ωik ∧ τkleil.

Proposition. If ω, τ ∈ Ω∗(M, gl(n,R)), then [ω, τ ] = ω ∧ τ − (−1)degωdegττ ∧ ω (note that the sign does not contain
extra minus one).

Corollary: [ω, ω] =

{
0 if degω is even,
2ω ∧ ω if degω is odd.

Fundamental vector field:
Suppose a Lie group G acts on a manifold P on the right.

Proposition. For A ∈ g = lie(G), p ∈ P , g ∈ G,

rg∗(Ap) = (Adg−1)A
pg
.

Let c(g) : G→ G be conjugation by g, c(g)(x) = gxg−1.
Def. The differential Ad(g) = c(g)∗ : TeG→ Te(G).

Proof: Let jp : G→ P be jp(g) = p · g. Then (jp)∗(A) = d
dt

∣∣∣
t=0

jp(e
tA) = d

dt

∣∣∣
t=0

p · etA = Ap.

(rg ◦ jp)(x) = pxg = pg · (g−1xg) = pg · c(g−1(x) = jpg(c(g
−1)(x)) =

(
jpg ◦ c(g−1)

)
(x), so rg ◦ jp = jpg ◦ c(g−1).

By chain rule, (rg)∗(Ap) = (rg)∗(jp)∗(A) = (jpg)∗(c(g
−1))∗(A) = (jpg)∗((Adg−1)A) = (Adg−1)A

pg
.

1.16 Lecture 16

Connection on a principal bundle

1.17 Lecture 17: Curvature on a principal bundle

Review of last lecture: let G be a Lie group, π : P → M a principal G-bundle. A connection on P → M is a C∞

right-invariant horizontal distribution, or, equivalently, it is a g-valued 1-form, ω, on P , s.t. (i) for A ∈ g, ωp(Ap) = A,

and (ii) r∗g(ω) = (Adg−1)ω.
The Maurer–Cartan form on G is the unique left-invariant g-valued 1-form θ on G s.t. θe(Xe) = Xe for Xe ∈ g = TeG.
θ satisfies the Maurer–Cartan equation: dθ + 1

2 [θ, θ] = 0.

Example:

M ×G G

M

π2

π1 . Let ω = π∗2θ, a g-valued 1-form on M ×G. Claim: ω is a connection on M ×G→ M .

We have dω + 1
2 [ω, ω] = 0,

Definition (Curvature of a principal bundle). The g-valued 2-form Ω = dω + 1
2 [ω, ω] on a principal bundle P is

called the curvature of the connection ω.

It is a measure of the deviation of ω from the Maurer–Cartan connection.
With respect to a basis X1, ..., Xn of g, ω =

∑
ωkXk, Ω =

∑
ΩkXk, where ωk and Ωk are R-valued forms on P .

We have
∑

ΩkXk =
∑

(dωk)Xk + 1
2 [
∑
ωixi, ω

jxj ] =
∑

(dωk)Xk + 1
2

∑
ωi ∧ ωjckijxk, so

Theorem (Second structural equation).

Ωk = dωk +
1

2

∑
ij

ckijω
i ∧ ωj .

(The 1st structural equation is for the principal bundle associated with the tangent bundle.)

Theorem (Bianchi’s second identity).
dΩ = [Ω, ω].
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(Uses [dω, ω] = −[ω, dω], and [[ω, ω], ω] = 0.)

Theorem. The curvature Ω on P satisfies (i) Ω is horizontal, i.e. ιXpΩ = 0 for any vertical vector Xp = Ap for some

A ∈ g. (ii) r∗gΩ = (Adg−1)Ω, (iii) Ωp(Xp, Yp) = (dω)p(hXp, hYp). where Xp = vXp +hXp is the decomposition of Xp into
vertical and horizontal components.

(Proof can be found in Tu’s book on Differential geometry.)
Suppose a Lie group G acts on a C∞ manifold M . Then Ω(M) = {C∞ forms on M} is a differential graded algebra

(dga).
On Ω(M), we can define 2 actions of g: (i) ιAτ := τAτ , and (ii)LAτ := LAτ .
We can also define an action of G: for g ∈ G, (iii) g · τ = r∗gτ , Cartan homotopy formula LA = dιA + ιAd.
Def A dga with athe action (i), (ii), (iii) satisfying (iv) is called a G-dga.
Example: if M is a G-manifold, then Ω(M) is a G-dga.
The Weil algebra is
W (g) = Λ(g∨)⊗ S(g∨).

Definition (The Weil map). The Weil map f : W (g)→ Ω(P ) is defined as follows. Let α ∈ g∨, p ∈ P , then

TpP
ωp−−→ g

α−→ R,

then α ◦ ωp is an R-valued 1-form on P , as p varies over P .
This gives a map f ◦ g∨ → Ω1(P ), f(α) = α ◦ ω.
We can extend f : Λ(g∨)→ Ω(P ) as an algebra homomorphism, i.e. if X1, ..., Xn is a basis of g, α1, ..., αn is the dual

basis, then Λ(g∨) = Λ(α1, ..., αn), we define f(α1 ∧ · · · ∧ αn) = f(α1) ∧ · · · ∧ f(αn).
This gives the Weil map f : Λ(g∨)→ Ω(P ).

1.18 Lecture 18: The Weil algebra

Let P →M be a principal G-bundle with a connection ω.
where G is a Lie group with Lie algebra g.
Let X1, ..., Xn be a basis for g, and α1, ..., αn the dual basis for g∨.

Definition (Weil algebra). The Weil algebra

W (g) = Λ(g∨)⊗ S(g∨) = Λ(α1, ..., αn)⊗ R[α1, ..., αn],

where in Λ(α1, ..., αn), αi ∧ αj = −αj ∧ αi, and in R[α1, ..., αn], αiαj = αjαi.

Let θi = αi ⊗ 1 ∈W (g), u0 = 1⊗ αi ∈W (g). Then we have W (g) = Λ(θi, ..., θn)⊗ R[u1, ..., un].
We give a grading by degθi = 1, and degui = 2.
We defined the Weil map f : Λ(g∨)→ Ω(P ).
Similarly, if Ω is the curvature of ω and p ∈ P , α ∈ g∗, then

TpP
ωp−−→ g

α−→ R

gives an R-valued 2-form α ◦ Ωp in P .
Then there is a map f : g∨ → Ω2(P ).
We can extend f to an algebra homomorphism f : S(g∨)→ Ω(P ),
where S(g∨) = R[u1, ..., un] with f(uij , ..., ukl) = f(uij) ∧ · ∧ f(ukl).

So we have a bilinear map f̃ : W (g)→ Ω(P ),
(α, β) 7→ f(α) ∧ f(β).
hence, there is a lienar map f : W (g)→ Ω(P ), where W (g) = Λ(g∨)⊗R S(g∨). This map is called the Weil map.
We want f to be a morphism of G-dga.

W (g) Ω(P )

W (g) Ω(P )

f

d d

f

with respect to a basis X1, ..., Xn for g and dual basis α1, ..., αn for g∨,
ω =

∑
ωiXi, Ω =

∑
ΩiXi.

f(θi) = θi ◦ ω = θi · (
∑
ωiXi) =

∑
i ω

iθk(Xi) = ωk, and f(uk) = uk · Ω = uk ◦ (
∑

ΩiXi) = Ωk.

17



How should dθk be defined in W (g)?
By the second structural equation, Ωk = dωk + 1

2

∑
ckijω

i ∧ ωj .
For f to preserve d, we must define dθk = uk − 1

2

∑
ckijθ

i ∧ θj .
By Bianchi’s second identity, dΩk =

∑
ckijΩ

i ∧ ωj .
So we must define duk =

∑
ckiju

iθj .
We can extend d to the Weil algebra W (g)→W (g) as an antiderivation of degree 1.
This makes W (g) into a dga.
Now define the action of Lie aigebra on the Weil algebra:
Let A ∈ g, we have

θk ωk

ιA(θk) ιA(ωk) = τAω
k = ωk(A)

Since ω(A) = A =
∑
θk(A)xk, so ωk(A) = constθk(A), so we must define ιA(θk) = θk(A), in order to make the

diagram above commute.

uk Ωk

ιAu
k ιA(Ωk) = τAΩk = 0

ιA ιA

because Ω is horizontal.
So we must define ιAu

k = 0.
We can extend ιA to W (G) as an antederivation of deg −1.
Finally, we define LA = dιA + ιAd. Because both d and τA commute with f , LA will also.
If g ∈ G,

θk ωk

r∗gθ
k

[
(Adg−1)ω

]k
f

r∗g r∗g

Let θ =
∑
θkXk, u =

∑
ukXk. We define r∗gθ = (Adg−1)θ, so r∗gθ

k =
[
(Adg−1)θ

]k
, and r∗gθ

k =
[
(Adg−1)u]

]k
.

Extend r∗g to W (g)→W (g) as an algebra homomorphism. This makes W (g) into a G-dga.

1.19 Lecture 19: The Weil algebra

Let G be a Lie group with Lie algebra g.
Assume G connected.
The a G-dga has 2 operations: ιA, LA, in addition to those of a dga.
(We do not need r∗g .)
The Weil algebra of G is, given a basis X1, ..., Xn for g, W (g) = Λ(g∨)⊗ S(g∨) = Λ(θ1, ..., θn)⊗ R[u1, ..., un].
dθk = uk − 1

2

∑
ckijθiθj , duk =

∑
ckijuiθj , ιAθk = θk(A), ιAuk = 0, LAθk = dιAθk + τAdθk = 0 − 1

2 ιA(
∑
ckijθiθj),

LAuk = dιAuk + τuduk = ιAduk.
Extend d to W (g) as antiderivation
Proposition: d2 = 0 on W (g)
(Since d is an derivation, d2 is a derivation.)
Proof: it is enough to check d2 = 0 on a set of algebra generators ofW (g). I.e. θ1, ..., θn, u1, ..., un, or θ1, ..., θn, dθ1, ..., dθk.
We have dθ = u− 1

2 [θ, θ]. Then one can check that d2θ = 0. This says d2θk = 0 for all k. This shows that d2 = 0 on
a set of generators of W (g). So d2 = 0 on W (g).

Theorem. H∗(W (g), d) =

{
R in deg 0
0 in deg > 0.

Proof. It is enough to find a cochain homotopy K : W (g) → W (g) of degree −1 s.t. dK + Kd = 1 (so that 1 is
homotopic to 0).

Recall dθk = uk − 1
2

∑
ckijθiθj := zk, duk =

∑
ckijuiθj .

Then θi, ..., θn, z1, ..., zn is a set of generators for W (g).
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Define K̄ : W (g) → W (g) by K̄θk = 0, K̄zk = θk, then it’s easy to check (dK̄ + K̄d)θk = θk and (dK̄ + K̄d)zk = zk.
But (dK̄ + K̄d)(θizj) = 2θizj . To remedy this, we define K = 1

p+q K̄ on Λp(g∨) ⊗ Sq(g∨) for (p, q) 6= (0, 0). This gives

dK + Kd = 1 on W (g) except in degree 0. This shows that H∗(W (g, d) = 0 in degree > 0. In degree 0, H0(W (g)) = R
because d(1) = 0.

[Below is from a correction in lecture 21:]
Cohomology of the Weil algebra: Let G be a Lie group with Lie algebra g. W (g) = Λ(g∨) ⊗ S(g∨). If X1, ..., Xn

is a basis for g and θ1, ..., θn is the dual basis for g∨ in Λ(G∨), and u1, ..., un is the dual basis for g∨ in S(G∨), then
W (g) = Λ(θ1, ..., θn)⊗ R[u1, ..., un].

Let zk = dθk = uk − 1
2

∑
i,j c

k
i,jθi ∧ θk, duk =

∑
ckijuiθj . Then dθk = zk, dzk = 0.

We defined an antiderivation K̄ : W (g) → W (g) with K̄zk = θk,, K̄θk = 0. We found dK̄ + K̄d = 1 on θk, zk. We
defined K = 1

p+q K̄ on
⊕

p+q>0 Λp(θ1, ..., θn)⊗ Sq(z1, ..., zn). Then dK +Kd = 1.

Note that K is not an antiderivation. If α ∈ Λp(θ1, ..., θn) ⊗ Sq(z1, ..., zn), then degα = p + 2q. Then H∗(W (g)) ={
0, deg > 0
R, deg = 0

1.20 Lecture 20: The Weil & Cartan model

Since the Weil algebra W (g) has the same cohomology as a contractible space, it can be an algebraic model of EG.
Let M be a left G-manifold.
An algebraic model for M is Ω(M) = {C∞ forms on M}.
Thus, an algebraic model for EG×M is W (g)⊗ Ω(M).
An algeraic model for MG = (EG×M)/G is (W (g)⊗ Ω(M))bas.
Def. If A is a G-dga, then Ahor = {horizontal elements} = {α ∈ A|ιAα = 0 ∀A ∈ g},
Ainv = {invariant elements} = {α ∈ A|LAα = 0 ∀A ∈ g} (Assuming G connected),
Abas = {basic elements} = {α ∈ A|ιAα = 0,LAα = 0 ∀A ∈ g}.
We can extend d and ιA to W (g) ⊗ Ω(M) as antiderivations: d(α ⊗ β) = (dα) ⊗ β + (−1)degαα ⊗ dβ, and LA to

W (g)⊗ Ω(M) as a derivation.
This makes W (g)⊗ Ω(M) into a G-dga.

Theorem (Equivariant de Rham theorem). For a connected Lie group G and a left G-manifold M ,

H∗G(M) ' H∗{(W (g)⊗R Ω(M))bas , d},

where RHS gives a Cartan model.

Proposition: If A is a G-dga, then dAbas ⊂ Abas.
Prof: Suppose α ∈ Abas is basic. Then for A ∈ g, ιA(dα) = (AA − dιA)α = 0 because α is basic.
LA(dα) = d(Aα) = 0.
So dα is basic.
Example. Take M = pt. Then H∗G(pt) = H∗((EG× pt)/G) = H∗(BG).
By the equivarinat de Rham theorem, H∗(BG) = H∗{W (g)bas, d}
W (g) = Λ(θ1, ..., θn)⊗ R[u1, ..., un] = {a0 +

∑
i aiθi +

∑
i<j aijθiθj + · · ·+ a1...nθ1 · · · θn|aI ∈ R[u1, ..., un]}.

α ∈W (g) is horizontal iff ιAα = 0 for all A ∈ g.
ιAa0 = 0 because ιA(const.) = 0 and ιAui = 0. ιXj

(
∑
i aiθi) =

∑
i aiδij = aj = 0 if ιAα = 0 if ιAα = 0.

ιX1
(
∑
i<j aijθiθj) = ιX1

(
∑
a1jθ1θj +

∑
2≤i<j aijθiθj) =

∑
1<j a1jθj = 0 if ιX1

α = 0.
By induction, α is horizontal in W (g) if and only if α = a0 ∈ R[u1, ..., un].
Thus W (g)hor = R[u1, ..., un] = S(g∨), the symmetric algebra of the dual of g.
W (g)bas = S(g∨)G,
By the equivariant de Rhan theorem, H∗(BG) = H∗{S(g∨)G, d}.
Cartan model for a circle action:
Below we take the example of G = S1, g = R.
Let X be a nonzero element of g, θ its dual basis for g∨ in Λ(g∨), u its dual basis in S(g∨).
Then, for G = S1, g = R, W (g) = Λ(θ)⊗ R[u] = (R⊕ Rθ)⊗ R[u] = R[u]⊕ θR[u] = {a+ θb|a, b ∈ R[u]}.
Let M be an S1-manifold, W (g)⊗RΩ(M) = (R[u]⊕θR[u])⊗RΩ(M) = Ω(M)[u]⊕θΩ(M)[u] = {a+θb|a, b ∈ Ω(M)[u]}.
a+ θb is horizontal iff ιX(a+ θb) = 0⇔ ιXa+ b− θιXb = 0⇔ b = −ιXa, so a+ θb is horizontal iff

a+ θb = a− θιXa = (1− θιX)a

for a ∈ Ω(M)[u].
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1.21 Lecture 21: The Cartan model for a circle action

First: a correction to the last lecture (which has been put back to the end of Lecture 19.)
Why is W (g) is a good model for EG?
EG → BG is the unique (up to G-homotopy) G-bundle s.t. for every principal G-bundle P → M , there is a

commutative diagram

P EG

M BG

If EG were a manifold, then there would be a homomorphism Ω(EG)→ Ω(P ) for every principal G-bundle P , meaning
that:

Every principal G-bundle P →M can be given a connection.
So there is a homomorphism (te Weil map) W (g)→ Ω(P ), θk 7→ ωk, uk 7→ Ωk.
Moreoever, W (g) has the cohomology of a point. In this sense, W (g) is an algebraic model for EG.
Weil model for a G-manifold M is W (g0⊗ Ω(M) ((Wg)⊗ Ω(M))bas, d).
Horizontal elements for a circle action:
G = S1, g = iR (i =

√
−1, we are putting G to be the circule |z| = 1, so g is the line z = 1, which is iR.) Let X 6= 0

in g. θ the dual basis for g∨ ⊂ Λ(g∨), u the dual basis for g∨ ⊂ S(g∨), then W (g) = Λ(θ)⊗R R[u] = (R⊕ Rθ)⊗R R[u] =
R[u]⊕ R[u]θ.

Thus, W (g)⊗ Ω(M) = (R[u]⊗ R[u]θ)⊗R Ω(M) = Ω(M)[u]⊕ Ω(M)[u]θ.
So an element of the Weil model W (g)⊗ Ω(M) is of the form a+ θb, where a, b ∈ Ω(M)[u].
a+ θb is horizontal iff ιX(a+ θb) = 0⇔ b = −ιXa (we showed this in the last lecture).
So (W (g)⊗ Ω(M))hor = {a− θιXa|a ∈ Ω(M)[u]}.
Since G is connected, a − θιXa (see the theorems in Lcture 13 &14) is basic iff a − θιXa is S1-invariant, i.e. iff

LX(a− θιXa) = 0.
LXθ = (dιX + ιXd)θ = d(1) + ιXu = 0; LX(θιXa) = 0 + θLXιXa = θιXLXa.
Then, a− θιXa is basic iff LXa = 0, i.e. iff a is S1-invariant.
But a ∈ Ω(M)[u], so a = a0 + a1u+ · · ·+ · · · akuk, where ai ∈ Ω(M).
So LXu = (dιX + ιXd)u = 0.

Thus, LXa = 0 iff LXai = 0 for all i, i.e. iff ai ∈ Ω(M)S
1

= {S1-invariant forms on M}.
Finally, for G = S1, and a G-manifold M , we have

(W (g)⊗ Ω(M))bas = {a− θιXa|a ∈ Ω(M)S
1

[u]}.

We have the Weil–Cartan isomorphism:

(W (g)⊗ Ω(M))bas
∼−→ Ω(M)S

1

[u], (1− θιX)a↔ a.

The Cartan differential:

(W (g)⊗ Ω(M))bas Ω(M)S
1

[u]

(W (g)⊗ Ω(M))bas Ω(M)S
1

[u]

d

λ

dX

ϕ

The Cartan differential dX is the linear map corresponding to the Weil differential d under the Weil–Cartan isomor-
phism.

Let a ∈ Ω(M)S
1

[u], then dXa = (ϕ◦d◦λ)(a) = (ϕ◦d)(a−θιXa) = ϕ(da−uιXa+θdιXa) = ϕ((da−uιXa)−θιXda) =
ϕ((da− uιXa)− θιX(da− uιXa)) = da− uιXa.

Thus we have shown that the Cartan differential is

dX = d− uιX .

Definition (Cartan model). The Cartan model is defined as (Ω(M)S1[u], dX).

Theorem (Equivariant de Rham theorem for G = S1) We have H∗S1(M) = H∗{Ω(M)S
1

[u], dX}.
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1.22 Lecture 22: Circle actions. Localization

Example: S1 acting on S2 by rotation about the z axis.
The volume form on S2 is ω = xdy ∧ dz − ydx ∧ z + zdx ∧ dy.
Choose X, the generator of S1: g = iR, let X = −2πi. Then the fundamental vector field X is defined by, at point

(x, y, z), X(x,y,z) = d
dt

∣∣∣
t=0

e−2πit ·

xy
z

 = d
dt |t=0

cos 2πt − sin 2πt 0
sin 2πt cos 2πt 0

0 0 1

xy
z

 = −2πy ∂
∂x + 2πx ∂

∂y .

(Exercise: check LXω = 0, so that ω is S1-invariant.)

Definition (Equivariant differential form). A element of Ω(M)S
1

[u] is called an equivariant differential form.

If ω̃ ∈ Ω(M)S
1

[u] has degree 2, then ω̃ = ω2 + fu, where ω2 ∈ Ω2(M)S
1

and f ∈ Ω0(M)S
1

. We say that ω̃ is an
equivariant extension of ω2.

ω̃ is equivariantly closed iff dX ω̃ = 0.
An equivariantly closed extension of the volume form:
Let ω̃ = ω + fu. dXΩ̃ = dω̃ − uιX ω̃ = dω + (df)u − uιXω − uιX(fu)︸ ︷︷ ︸

=0

= dω + u(df − ιXω) = 0 iff dω = 0

and df = ιXω. Since dω = 0 already, so the only condition for dX ω̃ = 0 is df = ιXω. We have ιXω = ιXω =
2π(x2 + y2 + z2)dz − 2πz(xdx + ydy + zdz) = 2πdz = d(2πz). Thus ω̃ = ω + 2πzu is equivariantly closed; it is the
equivariant extension of the volume form.

Now, our goal is to finally obtain the coefficients a, b in Eq. (1.4). We need more theorems:
[In commutative algebra, localization means introducing denominators.]

Definition (Localization). Let N be an R[u]-module. (H∗S1(pt) = H∗(BS1) = H∗(CP∞) = R[u].) Denote N =
{0, 1, 2, ...} Define the localization of N as Nu = { x

um |x ∈ N,m ∈ N}/ ∼, where x
um ∼ y

un ⇔ if ∃k ∈ N s.t. uk(unx −
umy) = 0.

Example: R[u]u = {a−m

um + a−m+1

um−1 +· · ·+ a−1

u +a0+a1u+· · ·+akuk|ai ∈ R} = {Laurent polynimials in u} = R[u][u−1] =
R[u, u−1].

Nu becomes an R[u]-module.
There is a R[u]-module homomorphism i : N → Nu, x 7→ x

1 . Its kernel is keri = {x ∈ N |x1 ∼
0
1} = {x ∈ N |∃k ∈

N s.t. ukx = 0} = {u-torsion elements in N}.
Hence, there is an exact sequence 0→ {u-torsion elements in N} → N

i−→ Nu → 0.

Definition (Torsion module). N is u-torsion if every element x ∈ N is a u-torsion.

[The use of localization: if localize N to Nu and we get zero, Nu = 0, then we know that N is u-torsion. This is the
theorem below:]

Proposition. N is u-torsion iff Nu = 0.

(Proof: “⇐” If Nu = 0, then the exact sequence gives that N is u-torsion. “⇒”: Suppose N is u-torsion, let x
um ∈ Nu,

there exists k ∈ N s.t. ukx = 0, so x
um ∼ ukx

ukum = 0
ukum = 0, so Nu = 0.)

Theorem 1. If S1 acts freely on M , then H∗S1(M) is u-torsion.

Proof:

ES1 ES1 ×M M

BS1 MS1 M/S1

Since S1 acts freely on M , by the Cartan mixing diagram above, MS1 →M/S1 is a fiber bundle with fiber ES1.
By homotopy exact sequence, MS1 is weakly homotopic to M/S1. By a theorem of algebraic topology (see e..g.

Hatcher) that says if two spaces are weakly homotopic, then they have the same cohomology, then we have H∗(MS1) '
H∗(M/S1). As H∗S1(M) = H∗(MS1), and H∗(M/S1) is the cohomology of some finite dimensional manifold, this means
that H∗(M/S1) is a finite dimensional vector space over R.

On the other hand, the equivariant cohomology H∗S1(M) is a R[u]-module (M → pt induces H∗(pt)→ H∗G(M), where
G = S1 so H∗(BS1) = H∗(CP∞) = R[u]). We further assume M is compact, so R[u]-module is finitely generated
R[u]-module. (Next lecture we will look at non-compact case.)

Since R[u] is a PID, and finitely generated modules over PID has the structure theorem which says that it has the
form R[u]r ⊕ torsion. If it contains nonzero R[u]r then this would be infinite dimensional. Hence, H∗S1(M) is torsion.

Next time we will further show that H∗S1(M) is a u-torsion.
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1.23 Lecture 23: Properties of localization

If k > dim(M/G), then uk ·H∗G(M) = 0 (since its degree is larger than the dimension of dim(M/G).)
If M/G is not compact, then H∗G(M) would be infinitely dimensional, but uk ·H∗G(M) = 0 still holds for a free action.

Therefore we have the following result

Theorem. If S1 acts freely on M , then H∗S1(M) is u-torsion.

To generalize this result to non-free actions, we need further results from commutative algebra/homological algebra.
Main three results we need are

1. Localization preserves exactness;
2. Localization commutes with quotient
3. Localization commutes with cohomology.

Theorem 1. If A
f−→ B

g−→ C is an exact sequence of R[u] modules at B, then Au
fu−→ Bu

gu−→ Cu is exact at Bu.

(Recall that fu( a
um ) = f(a)

um , so 1u = 1, (g ◦ f)u = gu ◦ fu, so imfu ⊂ kergu; Suppose gu( b
um ) ∼ 0

1 , i.e. g(b)
um ∼ 0

1 , so
there exists k ∈ N s.t. uk · g(b) = 0. But g is a morphism of R[u]-modules, so ukg(b) = g(ukb) = 0, so ukb ∈ kerg = imf ,

so ukb = f(a) for some a ∈ A. so b = f(a)
uk , and b

um = f(a)
uk+m = fu( a

uk+m ), this proves that kergu ⊂ imfu. Therefore
Au → Bu → Cu is exact at Bu. The result can them be extended to longer exact sequences.)

Theorem 2. Localization commutes with quotient: If A is an R[u]-submodule of B, then
(
B
A

)
u ' Bu

Au
.

(0→ A→ B → B/A→ 0 is exact. Since localization preserves exactnes, 0→ Au → Bu
g−→ (B/A)u → 0 is exact. This

implies that (by one of the isomorphism theorems of algebra) Bu

kerg ' img and so Bu

Au
'
(
B
A

)
u
.)

Theorem 3. Localization commutes with cohomology: If C is a differential complex, C0 d−→ C1 d−→ C2 d−→ · · · s.t. d2 = 0,

then Cu : C0
u
du−→ C1

u
du−→ C2

u → · · · is again a differential complex (because d2
u = (d2)u = 0), and H∗(Cu, du) ' H∗(C, d)u.

(Hk(Cu, du) =
ker(du : Ck

u→C
k+1
u )

imdu : Ck−1
u →Ck

u

.

We have 0 → kerd → Ck
d−→ Ck+1 is exact. Since localization preserves exactness, so 0 → (kerd)u → Cku

du−→ Ck+1
u is

exact, so we have (kerd)u ∼= ker(du).

On the other hand, Ck+1 d−→ Ck → Ck/imd→ 0 is exact. So when localize, we get that Ck+1
u

du−→ Cku
π−→ (Ck/imd)u → 0

is exact, and we have (Ck/imd)u ' Cku/(imd)u by theorem 1; and by the isomorphism theorem we have imπ =
Ck

u

kerπ =
Ck

u

im(du) , so im(du) ∼= (imd)u.

Therefore Hk(Cu, du) = kerdu
imdu

= (kerd)u
(imd)u

'
(

ker
imd

)
u

= Hk(C, d)u.)

Next lecture we will study locally free action:

Definition (Locally free action). An action of a topological group G on a topological space X is locally free if Stab(x)
is discrete for any x ∈ X.

Example: S1 acts on C2 by λ · (z1, z2) = (λz1, λ
nz2), where n ∈ Z+.

Stab(0, 0) = S1, Stab(0, z2) = {n-th roots of 1} if z2 6= 0, and Stab(z1, z2) = 1 if z1 6= 0.
The action of S1 on C2 − {(0, 0)} is locally free.

1.24 Lecture 24: Cohomology of a locally free action

Recall the definition of locally free action in the last lecture.
Proposition. If a Lie group G acts smoothly and locally-freely on a manifold M , then for all X 6= 0 ∈ g, the fundamental

vector field X is nowhere vanishing on M .
(Example: S1 acts locally freely on S2 = {p, q}, where p is the north pole and q the south pole. )
(Proof: Suppose Xp = 0 for some p ∈M . Then c(t) = p is an integral curve of X through p: c′(t) = 0 = Xp = Xc(t).

But ϕ(t) = e−tX ·p is also an integral curve for X through p. By the uniqueness of the integral curve through p, e−tX ·p = p
for all t ∈ R. So Stab(p) contains a curve e−tX , so is not discrete. This contradicts the locally-free condition.)

Proposition. If a compact abelian group acts locally freely on a manifold M , and X 6= 0 ∈ g, then there exists a
G-invariant 1-form ϕ on M s.t. ϕ(X) = 1.

(we will use the following fact: A manifold with a compact Lie group action has an invariant Riemannian metric 〈 , 〉.)
(Proof: Define for all p ∈ M , ϕp : TpM → R by ϕp(Zp) =

〈Xp,Zp〉
||X0||2

, where 〈 , 〉 is a G-invariant Riemannian metric.

Check that ϕp(Xp) = 1. Let g ∈ G. (l∗gϕ)p(Zp) = ϕgp(lg∗Zp) =
〈Xgp,lg∗Zp〉
〈Xgp,Xgp〉

=
〈lg∗Xp,lg∗Zp〉
〈〈lg∗Xp,〈lg∗Xp〉

=
〈Xp,Zp〉
〈〈Xp,〈Xp〉

= ϕp(Zp), where

we used lg∗(Xp) = (Adg)X
gp

= Xgp because G is abelian, and the fact that the metric in G-invariant. So we showed

that l∗gϕ = ϕ. Hence ϕ is G-invariant.)

The Cartan model for an S1-action on M is (Ω(M)S
1

[u], dX), where dXα = dα− uιXα.
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(Check that 1. dX : Ω(M)S
1

[u] → Ω(M)S
1

[u] is an antiderivation of degree +1. 2. d : N → N is an antiderivation of
R[u]-algebras, then du : Nu → Nu is an antidervation of R[u, u−1]-algebras.)

Theorem. If S1 acts locally freely on a manifold M , then H∗S1(M) is u-torion.

Proof. It suffices to show H∗S1(M)u = 0. By the equivariant de Rham theorem, H∗S1(M) ∼= H∗{Ω(M)S
1

[u], dX}, where

X 6= 0 ∈ Lie(S1). So H∗S1(M)u ∼= H∗{Ω(M)S
1

[u, u−1], (dX)u} (because localization commutes with the cohomology).

We have a ϕ ∈ Ω1(M)S
1

s.t. ϕ(X) = 1. To show H∗{Ω(M)S
1

[u, u−1], (dX)u} is zero, it suffices to find an α ∈
Ω(MS1

[u, u−1] s.t. (dX)uα = 1.
Then dX

(
α
um

)
= (dX)u

(
α
um

)
= dXα

um , If dXα = 1 and z is any dX -cocycle, then z = (dXα)z = dX(αz) (because
dXz = 0), meaning that any cocycle z is a coboundary.

To let’s aim to find this α. dXϕ = dϕ− uιXϕ = dϕ− u (because ιXϕ = ιXϕ = ϕ(X) = 1).

So dXϕ
u = dϕ

u − 1, giving −(1− dϕ/u)−1 dXϕ
u = 1, or −

(
1 + dϕ

u + · · ·+ (dϕ)n−1

un−1

)
dXϕ
u = 1, where the expansion stops

because (dϕ)n alwady has degree 2n > n, where n := dimM 6= 0. So (dϕ)n = 0 on M .

(dX)u = dX(dϕ)
u = d(dϕ)−uιXdϕ

u = dιXϕ = d(1) = 0, where we abbreviated (dX)u = dX , and we used ιXd = LX − dιX
and LXϕ = 0 because ϕ is an invariant form.

Thus, 1 + dϕ
u + · · ·+ (dϕ)n−1

un−1 is a dX -cocycle.
dXϕu = dX

(
ϕ
u

)
.

So−dX
(

(1 + dϕ
u + · · ·+ (dϕ)n−1

un−1 )ϕu

)
= 1. Let α = (1+dϕ

u +· · ·+ (dϕ)n−1

un−1 )ϕu we have dXα = 1, thenH∗{Ω(M)S
1

[u, u−1], (dX)u} =

H∗S1(M)u = 0.
This proves the theorem.

1.25 Lecture 25: General facts about H∗
G(M)

[Part of the proof of the last theorem has been moved to the last subsection.]

Theorem (Borel localization theorem for a circle action). If S1 acts on a manifold M with compact fixed point
set F . then

H∗S1(M)u
∼=−→ H∗S1(F )u

is an isomorphism of algebras over R[u, u−1].

(Eventually of course we want to get rid of the localization constraint. We will get there later.)
Above fixed point sets, we have:
Proposition: The fixed point set F of a continuous group action on a Hausdorff topological space X is closed in X.
(Proof: Let p be a limit point of F , i.e. there is a sequence pn ∈ F s.t. lim pn = p. Then, ∀g ∈ G, g ◦pn = pn. Because

the action is continuous, then g ◦ pn → g ◦ p. So pn → p = g · p, therefore p ∈ F . Thus F is closed.
Theorem. If a compact Lie group acts smoothly on a manifold M , then its fixed point set F is a regular submanifold of

M . (A regular submanifold is the same as embedded submanifold; and is very different from the immersed submanifold.)
Proof. Since G is compact, we can put a G-invariant Riemannian metric on M . For x ∈M , consider the exponential

map Expx : V ⊂ TxM
∼−→ U ⊂M . By choosing V sufficiently small, Expx : V → U is a diffeomorphism. We can then use

(Expx)−1 as a coordinate map on U .
TxM has a given inner product. This makes TxM into a Riemannian manifold. G acts on TxM by g · v = lg∗v ∈ TxM

since g · x = x.
We can choose V ⊂ TxM so that V is G-invariant. For example, if V = B(0, ε) and v ∈ V , then ||lg∗v||2 = 〈lg∗v, lg∗v〉 =

〈v, v〉 = ||v||2 < ε2. So lg∗v ∈ B(0, ε). Thus , any open ball centered at 0 in TxM is G-invariant. Choose a sufficiently

small open ball to be V . Then, from diffirential geometry, there is a commutative diagram

V V

U U

lg∗

Expx Expx

lg

.

Because lg : U → U is an isometry, 〈lg∗w, lg∗v〉 = 〈w, v〉. Let F be the fixed point set of G on M . Then F ∩ U is the
fixed point set of G on U .

Exp−1
x (F ∩ U) is the fixed point set of G on V . The subset of V fixed lg∗ is {v ∈ V |lg∗v = v} = V ∩ Eg, where Eg is

the eigenspace of lg∗ with eigenvalue 1
So Exp−1

x (F ∩ U) = V ∩ (∩g∈GEg) = V ∩ (linear subspace) ' F ∩ U ,
Hence F is a regular submanifold of M .
This completes the proof.
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1.26 Lecture 26: Equivariant tubular neighborhood and equivariant Mayer–Vietoris

Definition (Equivariant vector bundle). A vector bundle π : E → M is G-equivariant if (i) both E and M are left
G-spaces, and π : E → M is G-equivariant. (i.e. if x ∈ M goes to gx, then the fiber at x goes to the fiber at gx.) (ii) G
acts on each fiber linearly, i.e. lg : Ex → Egx is a linear transformation for all g ∈ G, x ∈ M . (Here we introduced the
notation Ex := π−1(x).)

Proposition. If π : E →M is a G-equivariant vector bundle with fiber V , then πG : EG →MG is a vector bundle with
fiber V .

Def. (Tubular neighborhood) A tubular neighborhood of a submanifold S ⊂ M of a manifold M is an open set U
containing S s.t. U has the structure of a vector bundle over S with the inclusion i : S ↪→ U being the zero section.

Definition (Equivariant tubular neighborhood). A G-equivariant tubular neighborhood of a G-invariant submanifold
S ⊂ M in a G-manifold M is a G-invariant open set U containing S s.t. U has the structure of a G-equivariant vector
bundle over S with the inclusion i : S ↪→ U being the zero section.

Theorem. (Tubular neighborhood theorem) If S ⊂ M is a compact submanifold, then S has a tubular neighborhood
U s.t. U → S is isomorphic to the normal bundle NS/M of S in M .

(Proof is given in Spivak’s book.)

Theorem (Equivariant tubular neighborhood theorem). If S ⊂ M is a compact G-invariant submanifold of a
G-manifold M , then S has a G-equivariant tubular neighborhood U s.t. U → S is isomorphic to NS/M .

Theorem (Equivariant Mayer–Vietoris sequence). Let M be a G-manifold, U , V two G-invariant open subsets
such that M = U ∪ V . Then there is an exact sequence

· · · → Hk−1
G (U ∩ V )→ Hk

G(M)→ Hk
G(U)⊕Hk

G(V )
r−→ Hk

G(U ∩ V )→ Hk+1
G (M)→ · · · (1.7)

where the map r is r : (α, β) 7→ (iUU∩V )∗α− (iVU∩V )∗β.

Lemma. If U , V are G-invariant open sets that cover a G-manifold M , then UG, VG are open sets that cover MG.
(Proof. Since i : U →M is G-equivariant and injective, then iG : UG →MG is injective (by the property of equivariant

map). By definition, UG = (EG×U)/G. Since EG×U is open on EG×M , so UG is open in MG. Similarly, VG is open
in MG. Then, we claim that MG = UG ∪ VG: let [e, x] := [(e, x)] ∈ MG, where (e, x) ∈ EG×M . So x ∈ M = U ∪ V . If
x ∈ U , then [e, x] ∈ UG, and if x ∈ V , then [e, x] ∈ VG. Therefore [e, x] ∈ UG ∪ VG. This shows that MG = UG ∪ VG.)

With this lemma, we can appy the ordinary Mayer–Vietoris sequence provided we have the following lemma:
Lemma. UG ∩ VG = (U ∩ V )G.
(Proof: U ∩ V ↪→ U is G-equivariant and injective, so (U ∩ V )G → UG is injective. Similarly, (U ∩ V )G → VG is

injective. So (U ∩ V )G ⊂ UG ∩ VG. Let [e, x] ∈ UG ∩ VG. Then [e, x] ∈ UG, so (eg, g−1x) ∈ EG×U for some g ∈ G. Since
U is G-invariant, so x ∈ U . Similarly x ∈ V . So x ∈ U ∩ V . So [e, x] ∈ (U ∩ V )G, so UG ∩ VG ⊂ (U ∩ V )G. )

Now we apply the usual Mayer–Vietoris sequence to the open cover {UG, VG} of MG, we get

· · · → Hk−1(UG ∩ VG)→ Hk(MG)→ Hk(UG)⊕Hk(VG)→ Hk(UG ∩ VG)→ Hk+1(MG)→ · · ·

which is Eq. (1.7) using the fact that H∗G(U ∩ V ) = H∗(UG ∩ VG), Hk(MG) = Hk
G(M) and so on.

Theorem. If S1 acts on M with no fixed points, then the action is locally free.
Proof: Since there are no fixed points for any x ∈ M , Stab(x) is a proper subgroup of S1. Note that Stab(x) is a

closed subgroup (because if g is a limit of Stab(x) then ∃gn ∈ Stab(x) s.t. gn → g, because the action is continuous,
gn · x → g · x, which is x → x as gn ∈ Stab(x). By the uniqueness of limit, g · x = x, so g ∈ Stab(x).). As a closed
subgroup of the Lie group S1, Stab(x) is a regular submanifold. If dimStab(x) = 1, so Stab(x) is open in S1. But Stab(x)
is closed, and S1 is connected, so Stab(x) is either ∅ or S1 itself, both impossible. Then we must have dimStab(x) = 0,
then Stab(x) is discrete, hence the S1 action is locally free.

1.27 Lecture 27: Borel localization for circle action

The Borel localization theorem (given at the beginning of Lecture 25): Suppose S1 acts on a manifold M with
complact fixed point set F . Then the restriction map is a ring isomorphism: H∗S1(M)u

∼−→ H∗S1(F )u.
Proof. Denote G = S1 in this proof. Since F is a closed subset of a compact manifold M , it is compact. From last
lecture, F is a compact submanifold. Since F is G-invariant, it has an equivariant tubular neighborhood NF , which is
isomorphic to the normal bundle NF/M . M − F is a G-invariant open subset, s.t. {NF ,M − F} is an open cover of M
by G-invariant open sets.

By the equivariant Mayer–Vietoris sequence, we have a long exact sequence
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· · · → Hk−1
G (NF ∩ (M − F ))→ Hk

G(M)→ Hk
G(NF )⊕Hk

G(M − F )→ Hk
G(NF ∩ (M − F ))→ · · ·

[Since localization preserves exactness, we are tempted to write down

· · · → Hk−1
G (NF ∩ (M − F ))u → Hk

G(M)u → Hk
G(NF )u ⊕Hk

G(M − F )u → Hk
G(NF ∩ (M − F ))u → · · · ,

but this actually is an exact sequence of R-modules, not of R[u] modules. This shows we cannot localize each term with
respect to u.]

The equivariant Mayer–Vietoris sequence can be written in the form

H∗S1(M) =
⊕

kH
k
S1(M) H∗S1(NF )⊕H∗S1(M − F )

H∗(NF ∩ (M − F ))

i∗

j∗δ

where all three terms are R[u]-modules, and i∗, j∗, δ are R[u]-homomorphisms; i∗ and j∗ are of degree 0, δ is of degree 1.
This triangule is exact in the sense that the kernel of any map is the image of the prceding map.
[This is an example of exact couple – see Lecture 21 of Bott–Tu.]
Since each term is an R[u]-module, we can localize with respect to u: as localization preserves exactness we have the

exact triangle

H∗S1(M)u H∗S1(NF )u ⊕H∗S1(M − F )

H∗(NF ∩ (M − F ))u

i∗

j∗δ

As S1 acts on M−F with no fixed points, so the action is locally free, so we have H∗G(M−F )u = 0 and H∗G(NF ∩(M−
F )) = 0. Therefore the restriction map i∗ : Hk

S1(M)u → Hk
S1(NF )u is an isomorphism. But Hk

S1(NF ) = Hk((NF )S1);
Next we’d like to show that Hk((NF )S1) ' H∗(FG).

Since NF is an equivariant tubular neighborhood of F , NF → F is G-equivariant vector bundle, Hence (NF )G → FG
is a vector bundle, in which FG ↪→ (NF )G is the zeroth section.

For any vector bundle E →M , there is a deformation retraction from E to the zero section. So H∗((NF )G) ' H∗(FG),
Therefore we have an isomorphism

Hk
G(M)u → Hk

G(NF )u = Hk
S1(F )u.

We have proved the Borel localization theorem.
Remark: the Borel localization theorem holds for a noncompact manifold M as long as the fixed point set F is compact.
In general, the inclusion i : F ↪→M induces the restriction i∗ that fits into an exact sequence

0→ keri∗ → H∗S1(M)
i∗−→ H∗S1(F )→ cokeri∗ → 0,

where cokeri∗ = H∗S1(F )/imi∗.
Then we have the exact sequence for the localization

0→ keri∗u → H∗S1(M)u
i∗−→ H∗S1(F )u → cokeri∗u → 0.

The Borel localization theorem tells us that
Corollary. Suppose S1 acts on a manifold M with compact fixed point set F . Then
(i) keri∗ : H∗S1(M)→ H∗S1(F ) and cokeri∗ are u-torsion.
(ii) if in addition, H∗S1(M) is a free finitely generated R[u]-module, then keri∗ = 0.
(Proof of (ii): H∗S1(M) is a free finitely generated R[u]-module over R[u] which is a PID, so it is free; but it is also a

u-torsion by (i), so we have keri∗ = 0. )
Remark: (ii) can be replaced by “if in addition, H∗S1(M) is torsion-free, then keri∗ = 0.”
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1.28 Lecture 28: Borel localization and ring structure

[First, a correction to the proof of the Borel localization theorem. This part has been incorporated in the proof in the
last lecture.]

The ring structure of H∗S1(S2), where S1 aicts on S2 by rotation about the z axis.

From the spectral sequence of
S2 (S2)S1

BS1 = CP∞
, which degenerates at E2, we have H∗S1(S2) = E∞ = E2

∼=

H∗(CP∞)⊗H∗(S2) = R[u]⊗ (R⊕ Rω) = R[u]⊕ R[u]ω̃, where ω is the volumne form on S2.
We have dω = 0 but dXω = dω − uιXω 6= 0, so ω is not an equivariantly closed form in H∗S1(S2). But we found that

an equivariant closed form extension of ω is ω̃ = ω + (2πz)u. This is why we had to use ω̃ as the basis.
Let a = ω̃

2π = ω
2π + zu. So we have H∗S1(S2) = R[u]⊕ R[u]a = R[u, a]/(a2 − u(c1u+ c2a)).

H∗S1(S2) is generated as a ring over R by u and a; We need to determine a2 = c1u
2 + c2ua.

Below we use the Borel localization theorem.
The fixed point set F = {p, q} (north and south poles), we have an exact sequence

0→ keri∗ → H∗S1(S2)
i∗−→ H∗S1(F ),

By borel localization, (keri∗)u = 0, so keri∗ is torsion.
Since H∗S1(S2) is torsion-free, so keri∗ (as a submodule) is torsion-free.
So keri∗ = 0, and H∗S1(S2) ↪→ H∗S1(F ).
But H∗S1(F ) = H∗S1({p, q}) = H∗(pS1 q qS1) = H∗(pS1)⊕H∗(qS1) = H∗(BS1)⊕H∗(BS1) = R[up]⊕ R[uq].
We have i∗u = (i∗pu, i

∗
qu) = (up, uq), i

∗a = (i∗pa, i
∗
qa) = (up,−uq) (using the expression of a, and the fact that the

restriction of the 2-form ω, i∗ω = 0 on a single point).
Hence i∗(a2) = (u2

p, u
2
q), u

∗(u2) = (u2
p, u

2
q), so i∗(a2 − u2) = (0, 0); Since i∗ : H∗S1(S2) → H∗S1(F ) is injective, we have

a2 − u2 = 0 in H∗S1(S2).

1.29 Lecture 29: Ring structure continued; Local data at a fixed point

H∗S1(S2) is generated as a polynomial ring over R y u, a, with relation a2 − u2 = 0 and maybe other relations.
So there is a ring homomorphism

0→ kerα→ R[u, a]

(a2 − u2)

α−→ H∗S1(S2)→ 0. (1.8)

Now, R[u] is a PID, and as an R[u]-module, R[u,a]
(a2−u2) = R[u]⊕ R[u]a is a free module.

Theorem. A submodule S of a free module M (not necessarily finitely generated) over a PID is free, and rkS ≤ rkM .
(see e.g. Rotman)

Therefore, kerα is free and of rk ≤ 2.
But H∗S1(S2) is also a free R[u]-module of rank 2. As Eq. (1.8) is an exact sequence of free modules, the middle module

is the direct sum of the left and right. This shows that kerα has rank 0, so kerα = 0.
Therefore

R[u, a]

(a2 − u2)

α−→ H∗S1(S2)

is a ring isomorphism.
Suppose a Lie group G ats on a manifold M smoothly on the left. Then for any g ∈ G, lg : M →M is a diffeomorphism.

So there is an isomorphism lg∗ : TxM → TgxM . If x is a fixed point of the action, then lg∗ : TxM → TxM . This gives a
map ρ : G→ GL(TxM) = {non-singular linear automorphisms of TxM → TxM}, that sends g 7→ lg∗.

Moreoever, ρ(gh) = (lg ◦ lh)∗ = lg∗ ◦ lh∗ = ρ(g) ◦ ρ(h).
Thus ρ : G→ GL(TxM) is a group homomorphism.
Def. A representation of G is a group homomoprhism ρ : G→ GL(V ) for some vector space V .
Def. If ρ1 : G → GL(V1) and ρ2 : G → GL(V2) are representations, then ρ1 ⊕ ρ2 : G → GL(V1 ⊕ V2) is defined by

(ρ1 ⊕ ρ2)(g)

(
v1

v2

)
=

(
ρ1(g)v1

ρ2(g)v2

)
=

(
ρ1(g) 0

0 ρ2(g)

)(
v1

v2

)
.

Def. W is an invariant subspace of V if ρ(g)(W ) ⊂W .
Def. If 0 and V are the only invariant subspaces, then ρ : G → GL(V ) is irreducible. Otherwise, ρ is reducible. ρ is

completely reducible if ρ is the direct sum of irreducible representations.
(Q: is every reducible representation completely reducible?)
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Example: ρ : R → GL(R2) by t 7→
(

1 t
0 1

)
is reducible, because x-axis is an invariant subspace. But it is not

completely reducible, as the matrix is not diagonalizable.
Theorem. Every finite dimensional representation of a complact Lie group is completely reducible.
Def. Two representations ρV : G → GL(V ) and ρW : G → GL(W ) are equivalent if there exists an isomorphism

f : V →W s.t. ∀g ∈ G,

V V

W W

ρV (g)

f' f'
ρW (g)

is commutative.
Theorem. The nonequivalent irreducible representations of S1 are (1) the trivial rep 1: S1 → {1} ⊂ GL(R) = R× of

dimension 1; (2) rotation Lm : S1 → GL(R2), Lm(eit) =

(
cosmt − sinmt
sinmt cosmt

)
, m ∈ Z+. (In general, Lm is equivalent to

L−m.)
Isolated fixed points of a circle action
At a fixed point x of a circle action on M , We have ρ : S1 → GL(TxM), so ρ can be written as a direct sum of

irreducible representations of S1:
ρ = Lm1 ⊕ Lm2 ⊕ · · · ⊕ Lmk ⊕ 1⊕ · · · ⊕ 1.
Theorem. If x is an isolated fixed point of a circle action, then ρ does not contain any trivial representation as

summands.
Proof. Since S1 is compact, there exists an S1-invariant Riemannian metric on M . Then lg : M →M is an isometry,

〈lg∗v, lg∗w〉 = 〈v, w〉 for all g ∈ G.
At a fixed point x ∈M , choose V to be a small open ball about 0 ∈ TxM ,
Then there exists a commutative diagram

V V

U U

lg∗

Expx Expx

lg∗

where Expx is a diffeomorphism.
So lg(Expxv) = Expx(lg∗v), if lg∗v = v for all g ∈ G, then Expxv is a fixed point of G.

Under the diffeomorphism, Fixed points in V
∼−→ F ∩ U ,

But Fixed points in V = V ∩ (linear subspace of TxM)
If F ∩ U is isolated, then ∩g∈G(eigenspaces of lg∗ with eigenvalue 1) = {0}, therefore ρ cannot contain a trivial

representation of dimension 1.

1.30 Lecture 30: Localization formula for a circle action

For a circle action,
∫
M
φ =

∑
p∈F ιp for an equivariantly closed form φ.

Manifolds with boundary
Def. If M is a manifold with boundary ∂M , and p ∈ ∂M , then locally at p, there exists a neighborhood U s.t. U is

homeomorphic to open subset of Hn = {(x1, ..., xn) ∈ Rn|xn ≥ 0}.
TpM = {derivatives on germs of C∞ functions at p} = R{ ∂

∂x1 |p, · · · , ∂
∂xn |p}. T ∗pM = R{dx1|p, ..., dxn|p}.

Everything that we have done so far generalizes to a manifold with boundary.
Integration of an equivariantform:
Def. If ω ∈ Ω(M)S

1

[u] is an equivariant form of degree k, then
ω = ωk + ωk−2u+ ωk−4u

2 + · · · , and we define∫
M

ω =

∫
M

ωk +

(∫
M

ωk−2

)
u+

(∫
M

ωk−4

)
u2 + · · ·

If k and n = dimM have different parity: then
∫
M
ω = 0.

If k and n = dimM have the same parity, say k = n+ 2m,
∫
M
ω =

{ (∫
M
ωn
)
um for k ≥ n,

0, for k < n.

Theorem (Stoke’s theorem for equivariant forms). Suppose S1 acts smoothly on a compact orientable manifold M

with boundary ∂M . (S1 will act on the ∂M .) If ω ∈ Ω(M)S
1

[u] of degree k, then∫
M

dXω =

∫
∂M

ω.
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(k is independent of n = dimM .)

Proof. Suppose k+1 and n have different parity, then both sides are zero for degree reasons. Now assume k+1 = n+2m.
Then

∫
M
dXω =

∫
M
dω − uιXω =

(∫
M
dωn−1

)
um − u#

∫
M
ιXωn+1 =

(∫
M
dωn−1

)
um =

(∫
∂M

ωn−1

)
um =

∫
∂M

ω. (we
have used that ωn+1 is automatically zero on a manifold M with dimension n.)

Rationale for a localization theorem
Suppose S1 acts on M with only isolated fixed points. Let F = {fixed points}.
Then TpM has no trivial 1-dimensional irreducible representations. So TpM = Lm1 ⊕ · · · ⊕ Lmn , where L is the

standard 2-dimensional representation of S1. Hence, dimM = 2n.
We can put an S1-invariant Riemannian metric on M . Then S1 acts by isometries on M .
Around each point p, let B(p, ε) be an open ball of radius ε. S1 acts on M − ∪p∈FB(p, ε) without fixed points, and

therefore the action is locally free. Let X = 2πi ∈ Lie(S1). For a locally free action, we found an S1-invariant 1-form

θ ∈ Ω1(M)S
1

, s.t. θ(X) = 1. And α ∈ Ω(M)S
1

[u, u−1] s.t. dXα = 1. In fact, α = − θ
u

(
1 + dθ

u + · · ·+
(
dθ
u

)n−1
)

, α has

degree −1.
With this α, we can define a cochain homotopy K : Ω(N)S

1

[u, u−1] → Ω(N)S
1

[u, u−1] by Kω = αω. Check: KdX +
dXK = 1.

Now replace M by M = ∪p∈FB(p, ε), if φ is equivariantly closed on M , then φ = (KdX + dXK)φ = dXKφ on
M −∪B(p, ε), so

∫
M−∪B(p,ε)

φ =
∫
M−∪B(p,ε)

dXKφ = −
∫
∂(M−∪B(p,ε))

Kφ =
∑
p∈F

∫
S2n−1
p (ε)

Kφ. (To be continued in the

next lecture.)

1.31 Lecture 31: the ABBV localization formula for a cicle action

Then, we have
∫
M
φ = lim

ε→0

∫
M−∪B(p,ε),p∈F φ =

∑
p∈F

cp.

At an isolated fixed point p, TpM = Lm1 ⊕ · · · ⊕ Lmn , the numbers m1, ...,mn are the exponents of the fixed point,
defined up to sign. But with the requirement that the orientations on the two sides agree.

Theorem (Atiyah–Bott 1984, Berline–Vergne 1982). If S1 acts on a compact oriented manifold M of dimension

2n, with only isolated fixed point set F , and φ = φ2n + φ2n−2u + · · · + fun ∈ Ω(M)S
1

[u], degφ = 2n, φ is equivariantly
closed, then ∫

M

φ2n =

∫
M

φ =
∑
p inF

f(p)

m1 · · ·mn(p)
.

Conditions for φ to be equivarinatly closed:
dXφ = dφ−uιXφ = 0⇔ dXφ = dφ2n+(dφ2n−2)u+· · ·−ιXφ2n)u−(ιXφ2n−2)u2−· · · = 0⇔ dφ2n = 0, dφ2n−2 = ιXφ2n,

dφ2n−4 = ιXφ2n−2, ..., df = ιXφ2.
Example. Surface area of unit sphere S2.

Let S1 act on S2 by rotation about z axis. Let X = 2πi ∈ Lie(S1). The volume form on S2 is ω = xdy ∧ dz − ydx ∧
dz + zdx ∧ dy ∈ Ω2(S2)S

1

.
Area(S2) =

∫
M
ω.

We need an equivariantly closed form ω̃ = ω + fu. dX ω̃ = 0⇔ dω = 0 and ιXω = df .
We found before that f = 2πz.
We orient S2 using ω in the sense that if v1, v2 is a positive basis for TpM , then ωp(v1, v2) > 0. So the orientation of

S2 at P = (0, 0, 1) is given by dx ∧ dy. Hence the orientation for TPS
2 is ( ∂

∂x ,
∂
∂y ). Hence TPS

2 = L so m(P ) = 1.

At the south pole Q = (0, 0,−1), ωQ = −dx ∧ dy, so TQ(S2) is oriented by ( ∂∂y ,
∂
∂x ).

Hence m(Q) = −1.

By the ABBV formula, Area(S2) =
∫
S2 ω =

∫
S2 ω̃ = f(P )

m(P ) + f(Q)
m(Q) = 2π·1

1 + 2π·(−1)
−1 = 4π.

Blow-ups (a way to avoid taking limits)

Definition (Blow-up). The blow-up of a manifold M at a point p ∈ M is (M̃, σ : M̃ → M) where M̃ is manifold with

boundary and σ : M̃ − ∂M̃ → M − {p} is a diffeomorphism, and σ−1(p) = ∂M̃ is in one-to-one correspondence with the
unit sphere in TpM .

Let B be open subset of R2 with 0 ∈ B. Define B̃ = {(x, v) ∈ B×S2n−1|x is in the ray of v}. Then define σ : B̃ → B,

σ(x, v) = x. Then σ−1(0) = {(0, v)|v ∈ S1} = S1. If x 6= 0, then σ−1(x) = (x, x|x| ), so σ is a diffeomorphism on B̃−σ−1(0)

and maps S1 to 0.
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1.32 Lecture 32: Proof of the localization formula, continued

Real blow-up:
If σ : M̃ → M is the real blow-up of M at p ∈ M . Locally relative to a charge (U, x1, ..., xn) at p, σ : Ũ → U is given

by Ũ = {(x, v) ∈ U × Sn−1|x = tv for some t ∈ R≥0, v ∈ Sn−1 is a unit vector}. If x 6= 0, then it determines a unique
inverse image (x, x

||x|| ); If x = 0, then σ−1(0) = {(0, v)|v ∈ Sn−1}.
If f : M → M has p as a fixed point, then f induces a map f̃ : M̃ → M̃ : on M̃ − σ−1(p), σ is a diffeomorphism, so

f̃ = σ−1 ◦ f ◦ σ; on σ−1(p) = Sn−1 = {all tangent directions at p}, by continuity, f̃(v) = f∗(v)
||f∗(v)|| .

Suppose S1 acts on M with isolated fixed points. Put an S1-invariant metric on M , dimM = 2n. Then S1 acts on M
by isometries.

At a fixed point p, TpM is a representation of S1, so TpM = Lm1 ⊕ · · · ⊕ Lmn 6= 0. Where L is the standard
representation of S1 on R2. (eit acts on (x, y) through the usual rotation matrix rot(t).)

The action of S1 on M induces an action on M̃ that takes S2n−1
p to S2n−1

p ⊂ TpM . If w = (u1, v1, u2, v2, ..., un, vn) ∈
TpM , then eit·w = diag(rot(m1t), rot(m2t), ..., rot(mnt))w.

LetX = −2πi ∈ Lie(S1), thenXw = d
dt

∣∣∣
t=0

e2πit·w = d
dt

∣∣∣
t=0

diag(rot(2πm1t), ..., rot(2πmnt))w = diag(2πm1J, ..., 2πmnJ)w,

where we defined J =

(
0 −1
1 0

)
. So Xw = 2π

∑n
j=1mj

(
−vj ∂

∂uj
+ uv

∂
∂vj

)
on TpM .

A 1-form θ on TpM s.t. θ(X) = 1 is θ =
(

1
2π

∑
1
mj

(−vjduj + ujdvj)
)

1∑n
j=1(u2

j+v2j )
.

On S2n−1
p , X = 2π

∑
mj

(
−vj ∂

∂uj
+ uv

∂
∂vj

)
, θ = 1

2π

∑
1
mj

(−vjduj + ujdvj).

Volume form on a sphere:
Sn−1 ∈ Rn is the boundary of the n-ball Dn. Dn can be the same orientation as Rn. volDn = dx1 ∧ · · · ∧ dxn, we

give Sn−1 the boundary orientation of Dn. The radial vector is ~r =
∑
xi ∂
∂xi . Its volume form is volS1 = ι~rvolDn =

ι∑ xi∂xi
(dx1 ∧ · · · ∧ dxn) =

∑n
i=1(−1)i−1dx1 ∧ · ∧ ˆdxi ∧ · ∧ xn.

Surface area of S2n−1: vol(S2n−1) =
∫
S2n−1 volS2n−1 = 2πn

(n−1)! .

Proof of the localization formula
Suppose S1 acts on M with isolated fixed point set F . Let σ : M̃ →M be the blow-up at all the fixed points. Choose

X 6= 0 ∈ Lie(S1). Let φ ∈ Ω(M)S
1

[u].

Lemma: dXσ
∗ = σ∗dX on Ω(M)S

1

[u].
(Proof: dXσ

∗φ = dσ∗φ− uιXσ∗φ = σ∗dφ− uιXσ∗φ; (ιXσ
∗φ)(...) = σ∗φ(X

M̃
, ...) = φ(σ∗XM̃

, σ∗...) = φ(XM , σ∗...) =
(ιXφ)(σ∗, ...) = (σ∗ιXφ)(...). Therefore, dXσ

∗φ = σ∗dφ− uσ∗ιXφ = σ∗dXφ.)

Assume φ equivariantly closed. We have found K : Ω(M̃)S
1

[u, u−1]→ Ω(M̃)S
1

[u, u−1] s.t. Kω = αω, where we defined

α = − θ
u

(
1 + dθ

u + · · ·+
(
dθ
u

)n−1
)

, and dXK +KdX = 1. So dXKφ = φ.

1.33 Lecture 33: Completing the proof of the localization formula∫
M
φ =

∫
M−F φ (because F has measure 0) =

∫
M̃−∂M σ∗φ (because σ : M̃ − ∂M̃ → M − F is a diffeomorphism)

=
∫
M̃
σ∗φ (because ∂M̃ has measure zero) =

∫
M̃
dXKσ

∗φ (since σ∗φ is equivarinatly closed) =
∫
∂M̃

Kσ∗φ (Stoke’s

theorem) =
∫
∪p∈F−S2n−1

p
Kσ∗φ =

∑
p∈F

∫
S2n−1
p

θ
u

(
1 + dθ

u + · · ·+
(
dθ
u

)n−1
)
σ∗φ.

Assume degφ = 2n, then φ = φ2n + φ2n−2u+ · · ·+ fun ∈ Ω(M)S
1

[u],
∫
M
φ =

∫
M
φ2n.

In the integral
∫
S2n−1
p

Kσ∗φ =
∫
S2n−1
p

i∗(ασ∗φ) =
∫
S2n−1
p

(i∗α)i∗σ∗φ, σ∗φ is restricted to S2n−1
p , so

S2n−1
p M̃

{p} M

i

σ σ

i

,

so i∗σ∗φ = σ∗i∗φ = σ∗(f(p)un) = f(p)un,

So
∫
M
φ =

∑
p∈F

∫
S2n−1
p

θ
u

(
1 + dθ

u + · · ·+
(
dθ
u

)n−1
)
f(p)un =

∑
p∈F

∫
S2n−1
p

θ(dθ)n−1f(p) =
∑
p∈F f(p)

∫
S2n−1
p

θ(dθ)n−1.

Recall that θ = 1
2π

∑n
j=1

1
mj

(−gjduj + ujdvj) on S2n−1
p , dθ = 1

π

∑
1
mj
duj ∧ dvj ,

(dθ)n−1 = (n−1)!
πn−1

∑n
j=1

du1dv1... ˆduj
ˆdvj ...dundvn

m1...m̂j ...mn
,

θ(dθ)n−2 = 1
2πn

∑
1

m1...mn
(vjdu1dv1...duj ˆdvj ...dundvn + ujdu1dv1... ˆdujdvj ...dundvn = (n−1)!

2πnm1...,mn(p)volS2n−1
p

.

Hence
∫
S2n−1
p

θ(dθ)n−1 = (n−1)!
2πn

1
m1...mn(p)

2πn

(n−1)! = 1
m1...mn(p) .

Finally,
∫
M
φ =

∑
p∈F

f(p)
m1...mn(p) , which is the localization fomula.
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Note that
∫
M
φ2n =

∫
M
φ. So this gives a way to calculate the ordinary dfferential form.

Later part of the lecture introduces “the Cartan model in general” which we put to next lecture.

1.34 Lecture 34: The Cartan model in general

Let G be a connected Lie group acting on a manifold M on the left.
Choose a basis X1, ..., Xn for g = Lie(G). Let θ1, ..., θn be the dual basis for g∨ in Λ(g∨). Let u1, ..., un be a dual basis

for g∨ in S(g∨), where degθi = 1 and degui = 2.
For X ∈ g, ιXθi = θi(X), ιXui = 0, dθk = − 1

2

∑
ckijθi ∧ θj + uk, duk =

∑
ckijuiθj .

LX = dιX + ιXd.
Introduce the shorthand: ιi = ιXi

, Li = LXi
, aI = ai1...im , and θI = θi1 ∧ · · · θim = θi1,,,im .

The Weil algebra is W (g) = Λ(g∨)⊗R S(g∨) = Λ(θ1, ..., θn)⊗ R[u1, ..., un].
An algebraic model for EG×M is W (g)⊗ Ω(M), with ιXθi = θi(X), ιXui = 0.
An element of W (g)⊗ Ω(M) = Λ(g∨)⊗ S(g∨)⊗ Ω(M) can be written as

a = a0 +
∑
i

θiai +
∑
i<j

θi ∧ θjaij + · · ·+ θ1 ∧ · · · ∧ θna1...n,

where aI ∈ S(g∨)⊗ Ω(M),
An element a ∈W (g)⊗Ω(M) is horizontal if ιXa = 0 for all X ∈ g, and is invariant if LXa = 0 for all X ∈ g, and is

basic if it is both horizontal and invariant.
Because ιX and LX are R-linear in X, a is horizontal ⇔ ιXi

a = 0 for i = 1, ..., n, and a is invariant ⇔ LXi
a = 0 for

i = 1, ..., n.
ιX , d extend to W (g⊗ Ω(M) as antiderivations, LX extend to W (g⊗ Ω(M) as a derivataion.
Theorem: there is an algebra isomorphism:

(W (g)⊗ Ω(m))hor
∼= S(g∨)⊗ Ω(M),

where a = a0 +
∑
aIθI 7→ a0.

(I.e. the horizontal elements are precisely those who do not have θ’s.)
(Proof: a0 =

∑
ui1 · · ·uimωI , ιXa0 =

∑
ui1 · · ·uimιXωI = 0, as ιXω = 0 for ω ∈ Ω(M). For simplicity we show the

case of n = 2: a = a0 + θ1a1 + θ2a2 + θ1 ∧ θ2a12, 0 = ιX1a = ι1a0 + ai − θ1ι1a1 − θ2ι1a2 + θ2a12 + θ1θ2ι1a12, 0 = ιX2a =
ι2a0− θ1ι2a1 + a2− θ2ι2a2− θ1a12 + θ1θ2ι2a12. a is horizontal ⇔ a1 = −ι1a0 and a2 = −ι2a0 and a12 = ι1a2 = −ι2a1, ⇔
a0 = −ι1a0 and a2 = −ι2a0 and a12 = ι2ι1a0 ⇔ a = a0−θ1ι1a0−θ2ι2a0 +θ1θ2ι2ι1a0 = (1−θ1ι1)(1−θ2ι2)a0. (In the case
n > 2, there will just be more factors.) φ has an inverse a0 7→ (1− θ1ι1)(1− θ2ι2)a0, so φ is an algebra homomorphism,
and therefore an algebra isomorphism.)

The above theorem implies that

(W (g)⊗ Ω(m))bas︸ ︷︷ ︸
Weil Model

∼= (S(g∨)⊗ Ω(M))
G︸ ︷︷ ︸

Cartan Model

.

The Weil model has a differential dW . The isomorphism above induces a differential (the “Cartan differential”) for
the Cartan model.

1.35 Lecture 35: Applications of equivariant cohomology

The equivairant de Rham theorem is for any compact Lie group, but the localization theorems are for torus action.
(There’s a localization theorem for a compact non-abelian group, by Lisa Jeffrey, Frances Kirwan. For noncompact

non-abelian group, much is kunnown.)

Theorem (Localization theorem for a torus action). Suppose a torus T of dimensional l acts smoothly on a compact
closed manifold M with fixed point set F (not necessarily isolated or 0-dimensional). If φ is equivariantly closed on M of
any degree, then ∫

M

φ =

∫
F

i∗φ

eT (ν)
,

where i : F ↪→M is the inclusion, ν is the normal bundle of F in M , eT (−) is the equivariant Euler class in H2dimF
T (F ) =

R[u1, ..., un].
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A priori, the RHS is a rational function in u1, ..., ul. But because the LHS is a polynomial in u1, ..., ul, the rational
function is actually a polynomial.

Application 1. Integral of invariant forms:
(see the example in previous lectures on the calculation of

∫
S2 volS2 .)

Application 2. Computation of topological invariants
Suppose G is a compact Lie group, and T is a maximal torus in G. E.g. G = U(n), then T = U(1) × · · · × U1 =

S1 × · · · × S1. Then G/T = complete flag manifold of Cn = {0 ⊂ Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λn = Cn, where Λi ' Ci}.
U(n)/U(1) × · · ·U(1) has Chern numbers, T acts on G/T by t · (gT ) = (tg)T . gT is a fixed point of the action ⇔

tgT = gT forall t ∈ T , ⇔ g−1tgT = T , ⇔ g−1tg ∈ T , ⇔ g−1Tg = T , ⇔ g ∈ NG(T ), ⇔ gT = NG(T )/T := WG(T ), the
Weyl group of T in G.

For Lie group G, the Weyl group WG(T ) is a finite reflection group.
Chern number of G/T is

∫
G/T

c1(−)i1 · · · cr(−)ir , where the Chern classes are defined for the tangent bundle. The

localization formula can be used to calculate this integral. We get
∫
G/T

c1(−)i1 · · · cr(−)ir =
∑

w∈WG(T )

· · · .

This can be generalized to a closed subgroup H of G of maximal rank, e.g. CPn = U(n)
U(1)×U(n−1) , G(k,Cn) =

U(n)
U(k)×U(n−k) .

(Rank of H is the dimension of the maximal torus of H. The rank of U(n) is n.)
For example, ∫

G(k,Cn)

c1(S)m1 · · · ck(S)mk =
∑

I=(i1,...,ik)

∏k
r=1 σr(ui1 , ..., uik)mr∏
i∈I
∏
j∈J(ui − uj)

,

where the Weyl group ofG(k,Cn) is permutations, indexed by I = (i1, ..., ik); and J = the complement of I in (1, ..., n),
ad σr is the r-th elementary symmetric function.

The RHS in fact is an integer as the LHS suggests.
(For more results, see L. Tu, Computing characteristic number using fixed points, https://arxiv.org/abs/math/

0102013.)

Application 3. Identities. E.g. CP 2 = G(1,C3). 1 =
∫
CP 2(−h)2 =

∫
CP 2 c1(S)2 =

∑3
i6=j=1

u2
i∏

i<j(ui−uj) .

Application 4. Pappus’s theorem:
Use three parallel planes to intersept the sphere. If the two vertical distances are equal, then the surface areas are

equal.
Let ω = volS2 . Calculate Let ω̃ = ω + fu be the equivariant extension. We have∫ z=b
z=a

ω =
∫ z=b
z=a

ω̃ = localization formula = 2π(b− a).
Application 5. Symplectice geometry:
M is symplectic if it has a closed nondegenerate 2-form ω on it, and G acts symplectically on M if l∗gω = ω for any

g ∈ G. If G is connected, this is equivalent to the condition that LXω = 0. Then dιXω = (LX − ιXd)ω = 0, Hence ιXω
is closed.

If ιXω is exact, say ιXω = df , then the action is said to be Hamiltonian.
Then ω̃ = ω + fu is equivariantly closed. This Hamiltonian action is the Hamiltonian in classical mechanics. So we

have the correspondence Classical mechanics⇔ Symplectic geometry⇔ equivariant cohomology.
6. Application in physics:

∫
M
eitfτ = localization theorem =

∑
· · ·

1.36 Lecture 36: The equivariant de Rham theorem

Recall that:
The Cartan model for a connected Lie group:

(
(S(g∨)⊗ Ω(M))G, D

)
.

Let X1, ..., Xn be a basis for g = Lieb(G), u1, ..., un be the dual basis for g∨, then S(g∨) = R[u1, ..., un]. The Cartan
differential D is given by Dα = dα−

∑
uiιXi

α, where we define d s.t. dui = 0.
Equivariant de Rham theorem: there is an algebra isomorphism H∗G(M ;R)

∼−→ H∗{(S(g∨)⊗ Ω(M))G, D}.
(Cartan proves this theorem for a free action in 1950.)
G acts on S(g∨) by the coadjoint representation, and G acts on Ω(M) by pulling back.
Corollary of the equivariant de Rham theorem. Take M = pt.
Then H∗G(pt) = H∗(BG;R) ' H∗{(S(g∨)⊗)RΩ(pt))G, D} = H∗{S(g∨)G, D} by equivariant de Rham theorem; we

have D = 0 on S(g∨)G, so we have H∗G(pt) = H∗(BG;R) ' S(g∨)G ' S(t∨)W , where t is the Lie algebra of the maximal
torus T in G, and W = NG(T )/T is the Weykl group of T . (the step S(g∨)G ' S(t∨)W is an easy theorem which can be
found in L. Tu’s 2010 paper).

To summarize, we have
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H∗(BG) ' S(g∨)G ' S(t∨)W .

Example: Let G = U(n), T = U(1) × · · · × U(1) = {diag(t1, ..., tn)|ti ∈ U(1) = S1}, then t = {diag(∗, ..., ∗)|∗ ∈ iR}.
Then W = NG(T )/T =

{group generated by T and Eij}
T = Sn (Where we defined Eij , the n× n matrix for transposition (ij),

and Sn is the symmetric group on n letters. )
So

H∗(BU(n)) = S(g∨)W = R[u1, ..., un]Sn ,

the symmetric polynomials in u1, ..., un.
Cartan’s theorem on the cohomology of base of a principal bundle:

Theorem. If P → N is a principal G-bundle, then H∗(N) = H∗{(W (g)⊗ Ω(P ))bas}.

Assuming this theorem, one can prove equivariant de Rham theorem:
First, assume free actions:
Fact: If G is a compact Lie group acting freely on the right on a manifold M , then M/G is a manifold, and M →M/G

is a principal G bundle. (For proof, see e.g. Lee’s book on Manifolds.)
By Cartan’s theorem above, H∗(M/G) = H∗{(W (g) ⊗ Ω(M))bas} = H∗{(S(g∨) ⊗ Ω(M))G, D}, where the last one

used the Weil–Cartan isomorphism. On the oter hand, when G acts freely, MG and M/G are weakly homotopy equivalent,
hene H∗G(M) = H∗(MG) = H∗(M/G) (theorem in algebraic topology), so we have

H∗G(M) = H∗{(S(g∨)⊗ Ω(M))G, D},

Proving the equivarianat de Rham theorem for a free G-action.
Equivariant de Rham theorem for an arbitrary action: MG = (EG×M)/G, where G acts freely on EG×M . By Cartan,

H∗(MG) = H∗{(W (g)⊗ Ω(EG×M))bas}, this doesn’t work because EG is not a manifold (it is infinite dimensional).
Then, in the more general case (not necesarily free action):
For a compact Lie groupG, EG =infinite Stiefel variety V (k,∞), which can be apprximated by V (k, n) for n sufficiently

large, s.t. for any i, Hi(V (k, n),R) = Hi(V (k,∞),R) = 0 for n sufficiently large.
MG = (EG×M)/G can be approximated by (EG(n)×M)/G := MG(n), so Cartan’s theorem applies, and this gives

the equivariant de Rham theorem in general.
Now let’s go back to prove Cartan’s theorem:
0 → Ω(P )︸ ︷︷ ︸

=B

↪→ W (g)⊗ Ω(P )bas︸ ︷︷ ︸
=B̄

→ B̄/B → 0 induces · · · → H∗(Ω(P )bas) → H∗(B̄) → H∗(B̄/B) → · · · , where

H∗(Ω(P )bas) = H∗(Ω(N)) = H∗(N); H∗(B̄) = H∗(Weil model). It turns out we can prove H∗(B̄/B) = 0 (Cartan writes
down a cochain homotopy between id and 0 to prove H∗(B̄/B) = 0.)
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