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1 An introduction to equivariant cohmology by Loring Tu

e Video lectures: https://www.youtube.com/watch?v=0hwDePh2RoY&1ist=PLQZfZKhcOkiAgfFYCdSQ3px6rHcISMCXY&
index=2&ab_channel=NCTSMathDivision

e Book: Introductory Lectures on Equivariant Cohomology by Loring W. Tu.


https://www.youtube.com/watch?v=0hwDePh2RoY&list=PLQZfZKhc0kiAgfFYCdSQ3px6rHc9SMCXY&index=2&ab_channel=NCTSMathDivision
https://www.youtube.com/watch?v=0hwDePh2RoY&list=PLQZfZKhc0kiAgfFYCdSQ3px6rHc9SMCXY&index=2&ab_channel=NCTSMathDivision

1.1 Lecture 1: Overview

Equivariant cohomology is essentially the algebraic topology of a space with a group action.

Cohomology (with any kind of coefficients) is a functor {topological spaces, continuous maps} — Rings. It gives
invariants of topological spaces.

In this course, not only topological spaces, but topological spaces with a group action.

Def. An action of group on a topological space X is a continuous map G x X — X, (g,2) = g -z sg 1-x =z,
g-(h-x)=(gh) x, Vg,h € G.

Equivariant cohomology H (-): {G-space} — Rings.

De Rham theorem: For a C'° manifold M, there is an isomorphism H*(M;R) ~ H*{Q(M)}, where Q(M) is the
complex of C*° forms on M.

In equivariant cohomology, there is an analog of the de Rham theorem:

The equivariant de Rham theorem: let G be a Lie group and M a C'*° G-manifold.

It is possible to construct a differential complex Qg (M) out of C* forms on M and the Lie algebra g € G, s.t.
HE(M) = H{Qg(M)}. The complex Qg (M) is called the Cartan complez. the elements of the Cartan complex Q¢ (M)
is the equivariant differential forms.

For example, if G = S, then Qg1 (M) = {3 ayu'|a; € Q(M)S'}.

(If X is in the Lie algebra of S1, which is R, or 77(S') (the tangent space at origin of S), u is the dual basis, i.e. the
basis for Ty (S1))

Equivariant cohomology is very useful because it can be used to calcualte ordinary integrals on a manifold (which is
usually very hard). We have

Equivariant localization theorem (Atiyah, Bott, Berligne, Vergne): Let G be a torus (S* x --- x S) and M a compact
oriented G-manifold with isolated G fixed points. If w is an equivariantly closed form, then
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where v, is the normal bundle of p (which is the tangent space), and e is the equivariant Euler class.
This theory gives a method for calculating the integral of an ordinary differential form.
The main theorems of this course is The equivariant de Rham theorem: and the Equivariant localization theorem.

1.2 Lecture 2: Definition of equivariant cohomology

Definition (G-space). A G-space X is a topological space X with continuous action of a topological group G.

Definition (G-equivariance). If X and Y are G-spaces, a morphism is a continuous map f: X — Y s.t.
flg-z)=g- f(z), VgeG,zelX.

Such a map is called G-equivariant.

Candidates for Hi(—): 1) H*(X/G), where X/G = {G-orbits}.

R, degree 1,2
. — — T — ql * — Ig*(Ql)y — ’ ’

Example: G =Z actson M =R by n-x =z +n, then M/G = S*, H*(M/G) = H*(S") { 0 otherwise

Example: G = S! acts on M = S? by rotation. M/G = I, so the quotient space cohomology is trivial, which is off of
our expectation of the definition of equivariant cohomology.

Crucial difference between the two examples: in the 1st example the G action is free, where in the 2nd example it is

not. “When you have a free action, and you take the quotient, you get something nice; otherwise, what you get can be
something weird.”

Definition (Free action). If G acts on X, the stabilizer Stab(z) := {g € G|g -« = x}. The action is free if Stab(x) =
{1}Vz € X.

Every left action of G on X can be converted to a right action. (Suppose G acts on the left on X, then x-g =g~ -2

suffices.)
If G acts on P and M on the left. Then the diagonal action of G on P x M is

g-(p,m):=(g-p,g-m).

If G acts on P on the right but on M on the left, then the diagonal action is

g-(p,m):=(p-g~".g-m).



Lemma. If G acts freely on P on the right, then no matter how it acts on M on the left, the diagonal action of G on
P x M is free.

l'=pand g-m =m, but

Proof: look at the stabilizer: suppose g- (p,m) = (p,m) < (p-g~t,g-m) = (p,m) & p-g~
as G acts freely on P so we must have g = e from the first.

For any topological group G, there exists a contractible space P on which G acts freely. We denote such a space as
EG (there can be many such spaces).

If P is a contractible space on which G acts freely, then P x M will have the same homotopy type as M, and G will

act freely on P x M. It turns out that such a space P exists for any topological group G, and it is deoted by EG.

Definition (Homotopy quotient, equivariant cohomology).. The homotopy quotient of M by G is defined as
Mg = (EG x M)/G, and we define equivariant cohomology as

HE(M) == H*(M).

(Need to prove that this definition is independent of the choice of EG.)

Let G = St. S acts on C™"*! by A(20, 21,y 2n) = (A20, .., A2p). If 3|22 = 1, then it defines S?"*1. S! acts on
S§2ntL Def: §2n+1/St = CP™. We have S' € S2 € S° C ---, and taking the quotient of each place with respect to S*
gives CP!, CP2,...

Let $°° = J;2, 52" 1. There is an action of S* on S°°, which is a free action: A-(zo, ..., 2n) = (20, ..., 2n), L.e. A2; = 2;,
since there’s at least one j s.t. z; # 0, so from A\z; = z; we get A = 1. Therefore, S acts freely on 5.

Definition (Weakly contractible). A space X with m,(X,z¢) = 0 for all ¢ > 0 is called weakly contractible.
it’s easy to show that this definition does not depend on the choice of x.

Theorem (Whitehead’s theorem). If a continuous map f: X — Y of CW complexes induces an isomorphism in all
homotopy groups 7y, then f is a homotopy equivalence.

Corollary. A weakly contractible CW complex X is contractible.

We will show that S°° is contractible by showing that S°° has vanishing homotopy groups at all positive degrees. See
next lecture.
71 (X, 29) = {[continuous maps f(S*,

{ 1) = (X, zo)l}
7q(X, x0) = {[continuous maps f(S9, (1

,0,...,0)) = (X, 20)]}

1.3 Lecture 3: Homotopy groups and CW complexes

Definition (Fiber bundle). A fiber bundle with fiber F is a subjection 7: E — B which is locally a product U x F,
o.e. every point b € B has a neighborhood U s.t. there is a fiber-preserving homeomorphism ¢¢: 7= 3(U) — U x F.

Example: (1) Covering space m: E — B; (ii) m: R — S! is a bundle with fiber Z; (iii) 7: S?*"*1 — CP" is a fiber
bundle with fiber S*.

Theorem (Homotopy exact sequence of a bundle). Suppose p: (E,z0) — (B,bg) is a fiber bundle with fiber
F = p~1(by). Assume B is path-connected. Let x( be a base point of F, and i: (F,x¢) — (E,zo) the inclusion. Then 3
exact sequence

o= e (F x0) LN 7 (E, xo) Ly (B, x0) = m—1(F,20) = -+ = Fo(F,zg) = mo(E, o).

0 k> 2,
Example: 7 (S!). By the homotopy exact seuqnece of 7: R — S above, it is easy to get m(S!) =< Z, k=1,
{0}, k=0.

Def. (Attaching cells): let D™ be the n-dimensional closed unit disk. Let A be a topological space. ¢: D™ — A the
attaching map. X is obtained from A by attaching an n-cell via ¢ if X = (ALl D)/ ~, where x € D™ ~ ¢(z) € A.

Denote €™ = int(D™) to be the (image of the) interior of D™ in X = (AII D™)/ ~. We write X = AUge™ = AUe™.
We can attach infinitely many cells all at once:

X = (AL (II,D})) / ~= AU (U eﬁ) :

A
Definition (CW complex). A CW complez is a Hausdorff space X with an increasing sequence of closed subspaces
X0c Xt c X?2C--- st (i) XY is a discrete set of points, (ii) for n > 1, X™ is obtained from X"~! by attaching n-cells
e, (iif) X has the weak topology: S is closed in X if and only if SN X™ is closed in X™, for all n > 0.



Theorem (closure-finite condition). The closure of each cell in a CW complex conains only finitely many cells of lower
dimensions.

Example. S :=J>7 5™ = Ujey S 2k+1 s a, CW complex with weak topology. Now we show S is contractible: last
time we proved 7, (S™) = 0 for k < n.

Theorem: 7,(S*°) = 0 Vk.

(Proof: S* has the same homotopy type as the “telescope”, see te video lecture. It’s shown in the lecture that the
telescope defines a deformation retraction of the telescope to S°°. Next, it’s shown in the lecture that The telescope has a
projection to R: 7: Telescope — R. Since S* is compact, (7o f)(S*) is compact in R, so is closed and bounded. So it lies
in [0, N] for some N € Z*. Thus, f(S*) c 7=%(]0, N]) = a finite telescope, ending in SV, which has the same homotopy
type as SV. One can choose N > k, Then f(S*) is null-homotopic. This proves that mj(S>) = 0 Vk.)

This shows the CW complex S is weakly contractible so is also contractible (by the corollary in the last lecture).

1.4 Lecture 4: Principal bundles
[Large part of the lecture is missing from the video.]

Definition (Principal G-bundle). A principal G-bundle is a fiber bundle 7: P — B with fiber G and an open cover
{(U, )} of B s.t. (i) G acts freely on the right on P; (ii) for each U, the fiber-preserving homeomorphism ¢y : 7= H(U) —
U x G, where G acts on the right on U x G by (u,z)g = (u, zg), is G-equivariant.

Note that the base space B has trivial G action.

Definition (G-bundle map). Let P — M and E — B be two principal G-bundles. A morphism of principal G-bundles,
or a G-bundle map, from P — M to £ — B is a morphism of fiber bundles

in which f: P — E is G-equivariant.

Definition (Pullback bundle). Let 7: E — B be a fiber bundle with fiber F' and h: M — B a continuous map. the
total space h*E of the pullback bundle is defined as h*E := ({(m,e) € M x E|h(m) = 7(e)}. Define the projections p;
and ps of M x F to M and F, respectively, then the pullback bundle is a bundle that fits into the diagram

WE 245 F

pll lw :

M- B

Proposition. The first projection map py: h*E — M, pi(m,e) = m, is a fiber bundle with fiber F'.
(Suffices to show that the pullback h*(U x F') of a product bundle over U is a product bundle h=1(U) x F over h=1(U).
This is indeed true, as we have the isomorphism h*(U x F) = h='(U) x F given by (m, h(m), f) — (m, f). )

P& E
Proposition (Universal property of the pullback). Given a bundle map ¢, 1l =, there is a unique bundle map

M B
¢: P — h*E over M such that the following diagram commtes:

\\%
h*E E

q1
p1 J{TI’

M —" B

P

Cartan’s mixing space and diagram (§4.3):

Definition (Cartan mixing space). If a: P — B is a principle G-bundle, and M a left G-space. Then one can form

the mizing space (Borel construction) P xg M = (P x M)/G = (P x M)/ ~, where (p,m) ~ (p,m) - g = (pg,g~tm). If

y = g~ 'm, then m = gy, so (p, gy) ~ (pg, y).



Let [p, m] := equivalence class of (p,m).
Define 71: P xg M — B by 71([p, m]) = a(p). (71 is well defined: 1 ([p, m]) = 71([pg, g~tm]) = a(pg) = a(p).)

Proposition (4.5). 71: P Xg M — B is a fiber bundle with fiber M.

(The claim that the fiber is M can be rationalized by setting P to be a product bundle P = B x G, in which case
PxgM ~(BxG)xg M~ B x M so this is indeed a fiber bundle, with base space B and fiber M. For why we have
(B x G) xg M = B x M, see the proof below.)

[Proof: due to the local trivialization property of fiber bundle, we only have to prove the case for when P is a direct
product bundle: P = U x G. For U = B. (Otherwise we choose an open set U C B on which #=}(U) = U x G and
proceed in the same way.) We have 7, (U) = o= (U) xg M ~ (U x G) x¢ M = U x M, completing the proof. Note
that here 7, 1(U) = a~Y(U) x¢ M follows from the definition of P xg M; a~'(U) xg M ~ (U x G) xg M follows the
functoriality of (=) xg M, and (U x G) xg M ~ U x M can be proven using the explicit map [(u, g), m] — (u, gm) and
show that it has an inverse (u, gm) — [(u,id), gm].]

This proposition can be nicely characterized by the Cartan’s mizing diagram:

P+ PxM —2 M

J{a Jﬁ J{v (1.1)

B+~ PxgM —25 M/G,

where (by the hypothesis of the proposition) P — B is a principal bundle. On general setting, one can prove that if
P — B is a principal bundle then 71: P Xg M — B is a fiber bundle. Furthermore, the fact that the fiber is M (what’s
in the upper-right corner) comes from the fact that G acts freely on P ((i) in the definition of principal G-bundle).

Summary: in Cartan’s mixing diagram, if the vertical map P < B is a principal bundle, then the lower horizontal map
P x¢ M =% B is a fiber bundle, whose fiber is M in the far corner of the other square. This pattern will be repeatedly
used later.

Theorem (4.10). In the category of CW complexes, suppose G acts on the left on M, and E, E’ are weakly contractible
spaces on which G acts freely. Then E xg M and E’ xg M are weakly homotopy equivalent.

(This shows that equivalent cohomology is well-defined, independent of the contractible space on which G act freely
that you choose.)

1.5 Lecture 5: Universal bundles

In defining HE (M), we chose a contractible space E on which G acts freely.
Such a space is the total space of a universal bundle.

P—=3hE—FE

~N1

X "+ Ba

Definition (Universal G-bundle). A universal G-bundle is a principal G-bundle EG — BG if (i) for any principle
G-bundle P over a CW complex X, 3 a map h: X — BG s.t. P ~ h*(EG); (ii) if hg,h;: X — B are two maps s.t.
h$(EG) = hi(EG), then hy and hy are homotopic.

Theorem (Homotopic maps pull back to isomorphic bundles). If hg, hy: X — B are homotopic, and E — B is a
principal G-bundle, then h§E ~ hiE.

Let Pp(X) = {isomorphism classes of principle G-bundles over X }. The above theorem says that: Fixing a universal
bundle EG — BG, the map
¢: [X,BG] — Pg(X)

is well defined. Here [X, BG] = {homotopy classes of maps h: X — BG}.

(i) in the definition of universal G-bundle < surjectivity of .

(ii) in the definition of universal G-bundle < injectivity of .

So ¢: [X, BG] — Ps(X) is a (set-theoretic) bijection.

(h: X — BG) v h*(BG).

Pg(—) is a contravariant function on CW complexes; [ BG] is also a contravariant functor, and Pg(—) = [—, BG] as
functors, i.e. Pg(—) is a representable functor.

Definition (Classifying slace). BG is called a classifying space for G.



Example. S*° — CP>, is a universal S'-bundle ( S°° is contractible), i.e. ES' = CP*>, and BS! = CP*>.

Theorem. A principal G-bundle E — B is universal in the category of CW complexes if F is weakly contractible.

Grassmannian is the set of all planes in Eucliean space;

(Recall that every compact Lie group is a subgroup of the orthogonal group. All frames — called Stiefel variety. Replace
S with the infinite Stiefel variety will give the unversal bundle for any compact Lie group.)

Example. 7: R — R/Z = S! is a universal Z-bundle, i.e. EZ =R, and BZ = S*.

Below we want to show that equivariant cohomology is well defined.

Using the Cartan mixing diagram in Eq. , with P = E: as E — B is a principal G-bundle, and M is a left
G-space, there we proved 71: (E x M)/G — B is a fiber bundle with fiber M.

E x M — (E x M)/G is a principal G-bundle.

Lemma. If F is a weakly contractible space on which G acts freely, and P — B is a principal G-bundle, then E x P/G ~
P/G = B (have the same homotopy type).

(Proof: we have another Cartan’s mixing diagram

E+™2 ExP—"2 P

la lﬁ Jv (1.2)

B+ ExP/G "= P/G

By homotopy exact sequence of a fiber bundle,
7, (E) = m(E x P/G) — mi,(P/G) — - -
we prove the lemma.)

1.6 Lecture 6: Equivariant cohomology, spectral sequences

First, continue the proof in the last lecture:

Fact [Hatcher, Pro 4.21] Weak homotopy equivalence f: X — Y (ie. fo: mp(X, zo) = mi(Y, f(x0)), Vk) induces an
isomorphism in homology f.: Hy(X,A) = H(Y, A) and cohomology f*: H*(Y, A) = H*(X, A) ¥V k and all coefficient
groups A.

Suppose E; and Fs are contractible spaces on which G acts freely. So that £y — E1/G, and Es — E/G are principal
G-bundles.

Let P = Eo x M. We know Ey x M — (E2 x M)/G is a principal G bundle Applying lemma to F; and P, we get
Ey x (BEa x M)/G ~ Ey x M/G (weakly homotopy equivalent). By symmetry, Ey x (E; x M)/G ~ E; x M/G. But
Ey x (B3 x M)/G and B x (E; x m)/G are homeomorphic (just exchanging coordiates), they are weakly homotopy
equivalent. Therefore F1 x M/G ~ E5 x M/G. By [Hatcher, Prop 4.21), we have H*(FEy; x M/G) ~ H*(Ey x M/G) for
any coefficient.

This proves that equivariant cohomology is well defined, independent of the choice of E.

(For CW complexes, if two spaces are weakly homotopy equivalent, then they are homotopy equivalent (Whitehead
theorem).)

Now: spectral sequences

Spectral sequences: referred to as “less digestible aspect of algebraic topology” by Raoul Bott.

A differential group is a pair (€,d) where & is an abelian group and d: £ — £ is a group homomorphism s.t. d? = 0,
so imd C kerd.

A spectral sequence is a sequence {(E,,d,)} of differential groups s.t. E. = H*(E,_1,d,_1) for r > 1.

We assume E, = @p,qGZ EP4 and usually we assue EP*¢ = ( for p < 0 or ¢ < 0. d,.: EP'9 — EPT74="*1 This means,
for fixed (p, q), if r > q+2, then d, is a zero map, then EP9 = EPY) = EPf, = ... = EB9, where we called the stationary
value EP:9.

(We have Eyyy = H*(E,,d,) = ket B S BT 0

A filtration on an abelian group M is a decreasing sequence of subgroups M = Dy D D1 D D3 D ---, the associated
graded group of {D;} is GM = g—‘; & B—; S+

I E=6, cz.pq4>0EV? then the filtration by p is Dy = D5, >0 Eba,

Leray’s theorem: see next lecture.

Let w: E — B be a fiber bundle with fiber F' over a simply connected basis space B (the original spectral sequence is
more general and did not assume simply connectedness; here we assume simply connected for simplicity). Assume that

in every dimension n, H"(F) is of finite rank and free. Then 3 a spectral sequence {F,,d,)}, with

EP4 = H?(B) ® HY(F),



and a filtration {D;} on H*(E) s.t. Ex =P, , ER? ~ GH*(E), i.e.

1.7 Lecture 7: Computation using spectral sequence

Theorem (Leray’s theorem). Let 7: E — B be a fiber bundle with fiber F' over a simply connected base space B.
Assume H™(F) is free, of finite rank, for any n > 0. Then there exists spectral sequence {(E,,d,)} with

ED? = H?(B) ® H(F),

which is an equality as rings, and a filtration {D;} on H*(E) s.t. Esx = GH*(E). Moreover, d, : E, — E, is an
antiderivation, i.e. d,(af) = (d,a)B + (—1)% ®adp.

“A filtration {D;} on H*(E) s.t. Eoc = GH*(E)” means that there is a filtration H*(E) = Dy D D1 D Dy D -+ D
D, >, GH*(E) = g—‘; ® g—; ® %i @ ---. For each n, there is an induced filtrartion {D; N H"} C H"(E) := H"™ s.t.
Hn(E) = (DO ﬂHn) D) (Dl ﬂH”) D) (D2 NH" D) ey, where Egén = DO ﬂH"/Dl ﬂH”, Eéénil = D1 ﬂH"/DQ ﬂH”,

(Example: G D Zy D 0, with G/Zo = Zs, then G can still be Zy or Zs X Zs.)

(Lemma: If 0 > A — B — C'is an exact sequence of abelian groups, and C is free, then B~ A¢ C.)

St — 55 f S0 ~
Example: H*(CP?). Use |, the homotopy exact sequence — 71 (S1) = m(S°) — m (CP?) = mo(Sh) —
——
CP? =0

70(9%) says 71 (CP?) = 0, so CP? is simply connected:

Then we can apply Leray’s theorem and we have Ey = H*(CP?) @ H*(S).

We have H(S1) = (1), and H'(S') = (z), so the 0th column is ES? = HO(CP?) ® H(S') = Z @ HY(S') = HI(S"),
where we used Z ® A = A. So we have

S e

0

S e

q=2 0 0 0
Er= g=1| =z ? ? ? ? 0
qg=0 1 ? ? ? ? 0
|p=0 p=1 p=2 p=3 p=4 p=5
Considering the differentials, we have F3 = Ey = -+ = Eo, = GH*(S®) = Z when the degree is 0 and 5, and vanishes
otherwise. ]
On H®(S9), there is a filtration H°(S%) = (DoNH?®) D (D1NH®) C (DaNH5) -+ -+ DsNH®) D 0, where B> = £o0i,
ElA = B;Qﬁi, 2,3 — gzggi, and so on.

and we have H°(S%) = (1) and H*(S*) = (u), where all other degrees of H*(S*) = 0. So we have

Es= 4=1 0 0 Z
¢g=0| Z 0 0 0 0 0

Using ds, we see that there must be a u in the (p,q) = (2,0) entry. Using the tensor product structure, we know that
(p,q) = (2,1) entry has uxr. Again using do we see that there must be a u? in the (p,q) = (4,0) entry, then the tensor
product structure says there’s a u?x in the (p,q) = (4,1) entry. So we have

qg=2 0 0 0 0

E, = g=1 T 0 ux 0 ulz 0
qg=0 1 0 U 0 u? 0
‘p:O p=1 p=2 p=3 p=4 p=5

So
H*(CP?) =7.& Tu ® Zu* = Z[u]/ (u®).



1.8 Lecture 8: Equivariant cohomology of S? under rotation

G =8', M = S2%, where G acts on M as a rotation along the polar axis. We want to compute
H%(S?) = H*((S%)g1) = H*((ES* x 8?)/8*) = H*(S™ x 1 S?).
By Cartan’s mixing diagram, we have

5% 5O X 52— 2

l l l (1.3)

CP® ¢ §% xg §? — §2/81

there is a fiber bundle

M —— Mg 52 —— 8% xgq1 52
| = |
BG CcP=

Fact: H*(CP™) = Z[u]/(u™*!), then H*(CP>) = Z[u].
By Leray, EY'? = HP(CP>) ® H9(S?)

q=3 0 0 0 0 0 0 0
q=2 Y 0 uyYy 0 u?y 0 udy
Ey= g=1 0 0 0 0 0 0 0
q=0 1 0 U 0 u? 0 u?
|p=0 p=1 p=2 p=3 p=4 p=5 p=6
Let’s easy to see that do = d3 = 0, as well as the differential on later pages. So Fy = F3 = --- = E.

This shows that E,, = GH*((5%)s1), with
HO((8%)s1) =2, H'((S*)s1) =0, H*(($*)s1) = (DoNH?) D (D1NH?) D (D2NH?) DO,

0,2 _ DonH? _ 1,1 _ DinH?* _ 2,0 _ DynH? _
where E° = 5%~7m = Zy, B3 = Bapgz =0, and B = 52573 = Zu, therefore we have an exact sequence

0— Zu— H?> = Zy — 0,

Since Zy is free, H?((S5?)g1) = Zu & Zy.
Then we have H3((5%)s1) = 0, and H*((S?)g1) = Zuy & Zu>.
In general, H°44((S?)g1) =0, H?"((S?)g1) = Zu"" 'y @ Zu™.
So
H%.(S?) = Zu) © Z[uly = Z[u, y]/ (y* = auy + bu?), (1.4)

for some a, b. where deg u = deg v = 2, as abelian groups.

[We will find the coefficients a, b in Lecture 29, after introducing the Borel localization theorem.]

We will compute the cohomology of the space (52)g: directly in the next lecture. Before that, let’s introduce some
general results:

Theorem. If G acts on M with at least one fixed point, then H*(BG) injects into H(M).

Proof (This was actually done in lecture 10): The inclusion map i: {p} — M is a G-map if p is a fixed point. Let
7w: M — {p} be the constant map. Then moi =1I: {p} — {p}. By functoriality (see lecture 10), i}, ong =I*: H:({p}) —
HE(M) — HE(({p}), hence 7§ : HE({p}) = H*(BG) — H{(M) is injective.

We need to develop some tools to figure out what the ring structure is.

General theorems about equivariant cohomology:

N, M be left G-spaces. If f: N — M is equivariant, then there is an induced map fg: Ng — Mg, given by

EG x N — EG x M, gives [e,n) — [e, f(n)],

EG xg N — EG xg M, [eg, g™ 'n] = [eg, flg~'n)] = [eg, 97" f(n)],

Consider f: M — pt, which is G-equivariant.

H*(pta) —— H*(Ma)

pta = EG x pt/G = EG/G = BG. f¢ induces a map in cohomology I I ,

H*(BG) HE (M)



This makes H} (M) into an H*(BG)-module, so HS (M) is an H*(BG)-algebra.

BG is the base of a universal bundle FG — B for G, and is called the classifying space for G.
Examples: BS'! = CP>~, BZ = S'.

Example BO(k)?

Definition (Stiefel varieties). V(k,n) = {orthonomal k frames in R™}; k-frame is an ordered set of k-linear indepen-
dent vectors. A k-frame spans a k-plane.

So there exists a map V(k,n) <, (h,n), whose fiber is all the orthogonal bases of a k-plane, i.e. fiber = O(k).
V(1,n) = {unit vectors in R"} = §~1
G(1,n) = RP-1

1.9 Lecture 9: General properties of equivariant cohomology

Proposition. If a topological group G acts freely on a topological space M s.t. M — M/G is a principal G-bundle, then
My is weakly homotopy equivalent to M/G.

(Recall that action is free < any point has trivial stabilizer group; weakly homotopy equivalent < homotopy group
agree at all degrees.)
Proof: By Cartan’s mixing diagral,

EFG +— EGxM — M

! ! !

BG M M/G

Since M — M/G is a principal G-bundle, Mc — M/G is a fiber bundle with fiber EG. Then, by the homotopy exact
sequence of the fiber bundle, - - — m(EG) — m(Mg) = 71 (M/G) = 71— 1(EG) — - - - where m,(EG) = 0 (for k > 0)
——

=0
as EG is contractible.

Example. S! acts on S* by X -z = Az, where A,z € S' € C. For each z € S*, Az = x = \ = 1, i.e. the action is free.
Then, the proposition above says that (S!)g: is weakly homotopy equivalent to S'/S* = pt.

To further show that (S')g: is homotopy equivalent to S*/S! = pt (using Whitehead’s theorem), we need to show
that (S')g:1 is a CW complex. We have (S1)g1 = (ES! x §1)/St = (S x S§')/St — 8%, by e, s] = es which has an
inverse map [e] — [e, 1] (so [e, s] = [es] = [es, 1] = [e, s], so (S1)g1 = S°°, which is a CW complex, so by Whitehead’s
theorem (S!)g1 has the homotopy type of a point.

Example. Now, going back to the example in the last lecture, (S?)g:. By the Cartan’s mixing diagram in , the
homotopy quotient (S?)g1 — BS! = CP* is a fiber bundle with fiber S2.

Another picture: The orbit space is $2/S* = [—1, 1]; if we take out the north and south poles p, g, then the action of
St on 8% —{p,q} = (—1,1) x St is free.

So we set S? = {p} 11 (S? — {p,q}) U {q}.

We have (S? — {p,q})s1 = ((=1,1) x SH)s1 = (=1,1) x (S1) g1 = (—1,1) x S (because S! acts trivially on (—1,1)
and we just proved above that (S1)g:1 = S°), has the homotopy type as (—1,1).

Then, {p}s1 = (ES* x {p})/S! ~ (ES')/S! = BS! = CP*>.

Therefore (S?)g1 = {p}s: 11 (S — {p,q})s1 U {q}s1 = CP>1I (—1,1) x S II CP* “a dumbbell”) has the same
homotopy type as CP>® V CP>* (“two CP°’s joining at one point).

[The fiber above p and ¢ is CP*°, and the fiber over (—1,1) is S|

Cohomology of X := CP>® II (—1,1) x S II CP*: use the Mayer—Vietoris sequence. Set U = CP* II (—1,1/2) and
V =(-1/2,1) I CP>,

We have
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(from H*(CP>) = Z[u] where u is a degree-2 element.)

So we have
Z for k=0,

H*(X)=4 0 for k odd,
7Z® 7, fork even

Last time we showed that H*((S?)g1) = Z[u] ® yZ[u], where deg(u) = deg(y) = 2.

Functoriality:

G-map = G-equivariant map.

A G-map f: N — M of G-spaces induces fg: Ng — Mg.

(Let’s show that the map fg is well defined: Ng = EG x N/G, Mg = (EG x M)/G, by sending [e,n] — [e, f(n)].
But sine [e,n] = eg,g~'n] = [eg, f(g7'n)] = [eg. g~ f(n)],

Hence, fg further induces a ring homormophism in cohomology

f&: H*(Mg) — H*(Ng)

where

*

H} M)ezx

N— o um Ng fe Me (N
N t/ R \ / (15)
p

pta = BG H*(BG)

a and f give the algebra structure, where elements of H*(BG) serve as scalars:

For any v € H*(BG) and « € G} (M), we have f&(u-z) = fi(a(uw)z) = fa(a(w))f*(x) = Bu) fé(x) = u- fE(z).
This shows that f& is a H*(BG)-homomorphism, i.e. H*(BG) is the scalar in the algebra.

So: f&: HE(M) — HE(N) is an H*(BG)-algebra homomorphism.

Hence, H{(—) is a contravariant functor from {G-spaces, G-maps} to { H*(BG)-algebras, H*(BG)-homorphisms}.

It is the composition of two functors: HA (=) = (—)* o (—)¢.

1.10 Lecture 10: Functoriality

Proposition. Let f: N — M be a G-map of G-spaces.
(i) f injective = fg: Ng — Mg is injective.
(ii) f surjective = f¢ is surjective.
(iii) If I: M — M is the identity, then Ig: Mg — Mg is the identity.
(iv) (ho fle =ha o fa-
(v) If f: N — M is a fiber bundle with fiber F, then fg: Ng — Mg is also a fiber bundle with fiber F'.
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(Proof: (i)-(iv) is straightforward so we only show (v): From (L.5), N — BG is a fiber bundle over N; Mg — BG is
a fiber bundle over M. So every point b € BG has a neighborhood U over which 7N (U) ~ U x N, 3, (U) ~ U x M.
fa: Ng — Mg is locally U x N — U x M, which is locally trivial with fiber F.)

Classifying spaces:

Example. Zs on S™ by the antipodal map: S™ — RP" is a principal Zs-bundle,

St S? S3
| | |
RP! RP? RP3

let S = J°7, 5™, RP> = | J°7, RP", there is a Zg-action on S° with quotient RP>, because S is contractible, so

n=1 n=1

S — RP is the universal Zs-bundle. And BZoy = RP*>.

Closed subgroups:

Let H C G be a closed subgroup of a topological group G. If G acts freely on EG, then so does H. Let B = EG/H.

Proposition: Then EG — B is locally trivial with fiber H.

(Proof: Since EG — BG is locally trivial it is locally U x G. So EG/H is locally (U x G)/H = U x (G/H), so
EG — EG/H islocally U x H - U x (G/H),

Theorem (Frank Warner’s book, Foundations of Differentiable Manifolds and Lie Groups). If H is a closed subgroup
of Lie group, then G — G/H is a principle H-bundle.

This means that locally, G — G/H becomes V x H — V for some open set V € G/H.

Therefore U x G — U x (G/H) is locally U x V x H - U x V, so EG — EG/H is locally trivial with fiber H. We
can take BH = EG/H.

This implies that if we have a universal bundle for a Lie group, then we have the universal bundle for any of its closed
subgroup, i.e. the following theorem

Theorem. If a Lie group G has a universal bundle EG — BG, then any closed subgroup has a universal bundle
EG — EG/H.

Theorem. If m;: EG; — BG; are universal bundle for ¢ = 1,2, then m; X my: EG x EGy — BGy x BGsy, (e1,e3) —
(m1(e1),m2(e2)) is a universal bundle for Gy x Gs.

(Proof by definition: (g1,g2)(e1,e2) = (e1,e2) < gie1 = e1,g2e2 = €2 < g1 = 1,92 = 1, so G; x Ga acts freely on
EG, x EG,. (7T1 X 71'2)71(1)1,[)2) = {(61,62)‘61 S 7'('71([)1),62 € Wﬁl(bz)} =G x Gz)
Corollary: B(G1 x G2) = BG1 x BG,. (Here equality is in the sense of up to homotopy equivalence.)

Example. A torus T is S* x --- x S', therefore BT = BS! x --- x BS' = CP™ x --- x CP>. By the Kiinneth formula,
H*(BT)=H*(BSY)® - @ H*(BS') = Zju1] ® - - - @ Z[uy,) = Z[uy, ..., u,] ( Since H*(CP>) is free abelian).

Well known theorem: Every compact Lie group can be embedded as a closed subgroup of some orthogonal group O(k).

A universal bundle for O(k):

Let V(k,n) = {orthonormal k frames in R”} = {n x k matrices|columns are orthonormal}, can multiply on the right
by A € O(k). A k-frame in R™ spans a k-plane in R™, and multiplying on the right by A is just changing the basis. So
the quotient V(k,n) by O(k) is the Grassmannian G(k,n).

Fact: V(i,n) — G(k,n) is a principal O(k)-bundle.

Then we have

V(k,n) —— V(k,n+1) —— V(k,n+2) —— -

| | |

Gk,n) —— Gk,n+1) —— G(k,n+2) —— ---

Let V(k,00) = Up—, V(k,n), G(k,00) = U,—, G(k,n). Then V(k,c0) is weakly contractble; and in fact it is a CW
complex so it is contractible.
Therefore, V(k,00) = G(k, 00) is the universal O(k)-bundle. From this , we arrive at

Theorem. Every compact Lie group G has a universal bundle.

Starting from next time, we will assume all the topological spaces are smooth manifolds and the groups are Lie groups;
and we will show equivariant cohomology can be computed using differential forms. This will give us the ring structure
of H%,(5?), which we have not fully determined yet.

11



1.11 Lecture 11: Review of differential geometry

New chapter today: use differential forms to calculate equivariant cohomology.

de Rham theorem: If M is a C° manifold, and Q*(M) = {C*° differential forms on M}, then H*(M;R) ~ H{Q*(M),d},
where H*(M;R) is singular cohomology, and 2*(M) is de Rham complex.

Equivariant de Rham theorem: if a Lie group G acts smoothly on a manifold M, then H}(M;R) ~ H*{Q§ (M), D},
where H}(M;R) is singular equivariant cohomology, and Q% (M) is called Cartan complex of equivariant differential
forms.

Lie derivative of a vector field:

Let X,Y € X(M) = {C* vector field on M}, p € M, X has an integral curve ¢;(p) through p:

e(p): (—e,€) = M, po(p) = p, Goe(p) = Xo (),

Actually, Je > 0, and a neighborhood U of p in M, s.t. ¢: (—¢,¢) x U = M and ¢o(q) = ¢q, Vq € U, %got(q) = Xo. ()
wr: U= @(U) C M. And we have ¢ 0 o5 = @its, w12 U — ¢(U), have inverse p_;: o (U) = U.

Definition (Lie derivative of a vector field). (LxY), = tlir% W+(’”_YP =L (p_1)Y,, ) € TyM.
—

Lie derivative of a differential form:

Definition (Lie derivative of a differential form). Let w € QF(M). (Lxw), = }ir% w.
—

Recall if vy, ...,v, € Ty M, then (gp}fw%(p)) (V15005 Uk) 1= W, (p) (12015 vy PraVk)-

M:pr-

Definition (Lie derivative of a function). (Lx) f = PH(I) ;
—

Theorem. LxY = [X,Y].

(The proof is a somewhat messy computation.)

Interior multiplication on a vector space: Let V' be a vector space. A k-covector on V' is an alternating k-linear function
onV:a:Vx---xV =R

We write a € A,(V) = A¥(VVY).

Def. If v € V, then w,a € AF=YVY), t,a)(v1, .y vi—1) = a(v1,.yvi—1). We have ((by 0 1)) (V1,0 Vp—2) =
(tp@)(V,v1, ooy Vg—2) = (v, 0,01, ..., Vp—2) = 0.

Definition (Interior multiplication on a manifold). If X € X(M), w € QF(M), Yi,...,Yp_1 € X(M), then
(wa)(Yl, ...,Yk_l) = w(X,Yi, ...,Yk_l).

Definition (Derivation, self-defined). A map D: Q*(M) — Q*(M) is a derivation if D(w A7) = (Dw) AT+ w A DT

Theorem (Properties of Lx). Theorem (i) Lx: Q*(M) — Q*(M) is a derivation of degree 0. (Derivation means that
Lx(wWAT)=(Lxw)ATH+wALxT).

(ii) Lx commutes with d: Lx -d=do Lx.

(iii) (Product formula) if w € QF, Lx (w(Y1, .., Ya)) = (Lxw) (Y1, oo, Ya) + 0 w(Y1, oo, LxY5, 0y V).

Theorem (Properties of Lx and tx). (i) tx: Q*(M) — Q*(M) is an antiderivation of degree-1: tx(w A T) = (txw) A
T+ (=D Cy A uxT,

(ll) Lx Olx = 0

(iii) (Cartan’s homotopy formula) Lx = dvx + txd.

(iv) tx: Q" (M) — Q*(M) is F-linear: tx(fw) = fixw for f € C*(M) = F. (But Lx is not F linear, as Lx (fw) =
(Lx flw+ fLxw.)

1.12 Lecture 12: Basic forms and invariant forms

Let G be a Lie group, m: P — M a C'*° principal G-bundle.

m: P — M is surjective, so m.: T, P — Ty, M is also surjective, 7*: Q*(M) — Q* is unjective.
Definition (Basic form). 7*Q*(M) C Q*(P) is called the subspace of basic forms.

Example: 7: R? = R, (z,y) — x

re(z,y) = (2,5 +7), w € QR is f(z,y)dz + g(z,y)dy.

The basic 1-forms are 7*(h(z)dz) = 7*(h(z))7*(dz) = n*(h(x))dz.

w = fdx + gdy is basic if and only if g = 0 and f(z,y) does not depend on y.

(i)ta,w = ta, (fdx + gdy) = fra,dx 4 gp,dy = g, where we used 5, dx = dx(0,) = g—z =0, and 1p,dy = 1.
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(ii) Lo,w = Lo, (fdx + gdy) = (Do, f)dx + fLo,dx + (La,9)dy + gL, (dy) = g—idm‘ + g—gdy, where we used Lp, dz =
d(Ls,x) = d(0) = 0, and Ly, dy = d(1) = 0. We see that if g = 0 is already guaranteed by 15, w = 0, then Ly w further
guarantees that 0, f(x,y) =0, i.e. f(z,y) does not depend on y. So we have the following proposition:

Proposition. w = fdx + gdy € Q'(R?) is basic for 7: R? — R, if and only if tp,w = 0 and Ly, w = 0.

Now, our task is how to generalize this proposition to an arbitrary principal G-bundle.

Vertical vectors on a principal bundle:

Let 7: P — M be a principal G-bundle, and p € P. Then m,: T, P — T, (M).

Definition (Vertical vector). %, := {vertical tangent vectors at p} := kerm,.
An element A € g gives a curve ' € G. Then e* defines a curve in M.

Definition (Ap). If G acts on M smoothly on the left, and A € g, the Lie algebra of G, for p € M, define the vector field

at p, A = % e t4 . p. (If G acts on M on the right then the definition changes to Ay = % etd . p)
t=0 t=0
Theorem: [A, B] = [A, B] for A, B € g. (This sign convention agrees with the sign convention above. Also note that
[A, B] is the lie bracket, whereas [A, B] is the commutator for vector fields.)
Theorem. A is a C° vector field on M.

Theorem (Integral curve). The integral curve of A through p € M is s (p) = e7*4-p. (Colloquially, “left multiplication
by eftAw )
(Proof. We need to show £o(t) = A, () for all t. (&oy(p) = &|emoe 94 p=A a,=A, )

Theorem. Ap is a vertical vector.

Fix p € P and define j,: G — P by g — p-g. Then jp.: T.G = g — T, P is given by j,.(4) = % jp(e“‘) =
t=0

4l petd = A
dt|,_q Ly
Then 7. (A,) = Tujp«(A) = (70 jp)«(A) =0 (70 j, = 7(p), a constant map), so A is a vertical vector field.
Invariant forms:

Recall that a basic form on P for a principal bundle 7: P — M is 7*w for some w € Q*(M).

We have r(1m*w) = (mory)*w = m*w.

((morg)(p) = m(pg) = =(p).)

If G acts on M on the left, each g € G defines a differential l,: M — M.

Definition (Invariant form). A form w € Q*(M) is G-invariant if [;w = w for all g € G.
So a basic form on P for 7: P — M is G-invariant.

Theorem (Characterization of invariant forms). Assume G connected, and acts on M. Then w € Q*(M) is G-
invariant if and only if Law = 0 for all A € g, the Lie algebra of G.

Proof. First prove “=": If w is G-invariant, then [jw = w for all g € G. This implies p}_;, 4w = w, for any A4 € g.

This is the same as ¢} (w), Law = % _ plw = % o = 0.

The “«<” part of the prove will be given in the next lecture.

1.13 Lecture 13: Basic forms

Today we want to characterize basic forms using differential forms.

The homotopy quotient Mg is the base space of a principal G-bundle EG x M — Mg. Let G be a Lie group. We
work in the C'*° category.

Definition of invariant forms — see last lecture.

Continue the proof in the last lecture: <: suppose Law = 0.

Let p € M. An integral curve of A through p is ¢;(p) = e - p =1, -+a(p).
We have Law = 0 = (Law), = %’ (piw)p = (Zaw)y = 0, define h(t) = (IX_,aw),: R = AF(T3(M)) is

constant. (Here we have assumed that w is a k-form.) We want to show h(t) = h(0) = w, is constant.

W) = g olienaw = gl olimea (1F0a) omiayy = Ueade] g (I5-0aw) s, (the pullback of differential forms
commutes with d% because [*_,, is linear.) But we have ;2 a0 (lz,sAw)e_m_p = (Law)e-tap = 0,50 B/ (1) =0, h(t) = w,

is constant. Since G is connected, G is generated by any neighborhood of the identity. 3 a neighborhood U of the identity
s.t. e(—): g — G is a diffeomorphism on U, so every g € G is a product of finitely many exponentials
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Thus ([;w), = w, for all g € G, p € M.

Vertical vectors: let 7: E'— M be a fiber bundle with fiber F. p € E, then m,: T, — Ty (,)M is surjective.
In last lecture we defined the set of vertical vectors at p to be kerm, := .

We have also defined j, and jj., which acting on A gives the fundamental vector field: (j,).«(4) = A, € Ty,.
This defines a map (jp)«: g = ).

Lemma. Let A € g. Then 4, = 0 if and only if p is a fixed point of the curve {et4 € GY.

Proof: “<": A, = | _ p-e'* = 2&| _ p=0(if pis a fixed point of e'*. “=": suppose 4, = 0, an integral curve of A
through p is ¢¢(p) = p-et4. Let ¢(t) = p. Then ¢/(t) =0 = A, = A, so that c(t) is another integral curve of A through
p. By the uniqueness of integral curves, p;(p) = p for all t € R, i.e. p- et =p for all t € R. If (j,)«(A) = A, =0, then p
is a fixed point of €4, so Stab(p) D {e!|t € R}. Since P is a principal bundle, G’ acts freely on P, so Stab(p) = {1}, so
{e!4t € R} = {1}, hence A = 0. So (j,)+: g — V, is injective.

Since dimg = dimG = Uy, (j,)« is an isomorphism.

Horizontal forms:

Let w: EE— M be a fiber bundle.

Definition (Horizontal form). A form w € Q*(E) is horizontal if at any p € E, ty,w = 0, VY}, € U,,.

Basic forms are horizontal: if w = 7*(7) € Q¥(E) and vy, ..., vx—1 € T,(E), then (ty,w)(v1, ey Vh—1) = W(Yp, V1, o0y V1)
(W*T)p(yp, ) = Tﬂ.(p) (W*Yp, ) = Tﬂ.(p)(o, ) = 0.

1.14 Lecture 14: Basic forms, ring structure on H*(FE).
Characterization of basic forms:

Theorem (Basic < invariant + horizontal). Let G be a connected Lie group, and 7: P — M a principal G-bundle.
A form w € QF(P) is basic if and only if it is horizontal, i. tyw =0, and Law = 0 for all A € g.

Proof: “=" has been done in the last lecture. Now, “«<”: Suppose tqw = 0, and L w = 0 for all A € g, since G is
connected, w is G-invariant, let m € M, wy, ..., wy € T, M, pick any p € 7=1(m) C P, and vy, ..., v3, € TP, st. mau; = w,
for all 4. Then define 7, (w1, ..., w) = wp(v1, ..., vx). Then w = 7*7, because

T (W1, ooy W) = Ton (M1, oy TaVg) = (7°7) (01, -0y VR, (1.6)

therefore we have found the form downstars on M. To show that it is a basic form, we still need to show that the form
is well-defined, i.e. we need to show that 7 is independent of the choice of v; and p:

prove independence of v;: suppose v} € T,P is another vector s.t. mw] = w1 = m.vq, then m, (v —v1) = 0,
so v} — vy is vertical, so v} —v; = A, for some A € g. Since taw =0, 0 = wy(A4,,v2, ..., vx) = wp(V],v1,V2, ..., VL), SO
wp (v, V2, ...) = wp(v1, V2, ...), showing that the definition is independent of the choice of vy, and simiarly independent
of the choice of vs,v3, ....

Then prove independence of point: suppose p’ € m~*(m) is another point in P above m. Then because G acts freely
and transitively, so p’ = pg for some g € G. Let vi,...,v}, € Ty P s.t. mv, = w;, then wy (v], ..., v},) = wpg(v], ..., v) =
(ry-1w)pg(v1, -, v;) (because w is G-invariant), so wy (v, ..., V) = 771 (Wpgg=1) (V1 -, V) = wp(Tg=1,01, .., Tg-1,0},), since
Tl g=1,U] = V) = Wy, SO Wy (V] ..., V) = Wp(v1, ..., vx). This shows that the definition is independent of the choice
of p e m=(m).

Thus 7 is well-defined, and w = 7*7 is basic.

[Summary of lecture 12-14: an element is basic (meaning that it comes from the base) iff it is horizontal and invariant.
If the group G is connected, it is invariant if and only if its Lie derivative is zero with respect to all vertical vector fields.]

Ring structure on H*(E):

Product structure on associated graded module: Let 7: E — B be a fiber bundle with fiber F'. Let H*(—) be
cohomology with coefficients in any commutative ring R with identity 1.

Leray’s theorem: There is a filtration H*(E) = Fy D Fy D F; D --- so that multiplication in H*(E) induces a map
Fp x F; — Fk+l-

It follows that Fj x Fi41 — Fiyi41, and Fiy1 X Fj = Fiq41, therefore there is an induced map

Fy, o E R Fiqy
Fropn Fiy Fitip1’

This is the product structure on GH*(E) = @re, %ﬁrl

Theorem (Spectral sequence of a filtered complex). F., ~ GH*(E) as isomorphic rings.
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See Lecture 22 and 23 of the Bott-Tu notes.

Example: Cohomology ring of U(2).

U(2) acts on C2: it preserves the unit sphere S® C C2.

U(2) acts transitively on S3; Stab((1,0)) ~ S*. By the orbit-stabilizer group, U(2)/U(1) ~ Orbit((1,0)) = S* (as
U(2) acts on S? transitively). Since U(1) is a closed subgroup of the Lie group U(2), there is a fiber bundle

U(l) —— U(2)

|

53

Since $? is simply connected, we have
Ey = H*(S*) ® H*(S"),

we have the spectral sequence

qg=21 -
b a=1|@ 0 0 g 0
2 — q:() 1 0 0 i 0 o)
|p=0 p=1 p=2 p=3 p=4
where all the --- are zero entries. All the differentials dy are forced to zero. Using Fy = -+ = Eoo = GH*(U(2)).

HOWU(2) =21,

HY(U(2)) = F§ D F! D F} =0, where F} /F} = Zxz, Fl/F} =0, s0 F} =0, and H (U(2)) = F} = Zz. (since 7 is
actually in H(U(2)), we will write z = 7.)

Similarly, § € H3(U(2)), and 2y € H*(U(2)), so we can write y = ¢, and zy = Zy. So we get

R-1 k=0
R-z k=1
HYU@2))={ R-y k=3 =R(z,y)/(z? v* vy + yz) = A21, 22),
R-zy k=4
0 otherwise

where R(z, y) is the free algebra generated by x, y, and A(x1, x2) is the free exterior algebra defined as follows: A(xq, ..., z) =
R(zy,...,xx)
(ziay—(—1) 10T ) |

1.15 Lecture 15: Vector-valued forms

Let’s assume all vector spaces are finite dimensional and are over R.
A k-covector on a vector space T is a k-linear alternating function 7% =T x T — R.

k times
Let V' be a vector space. A V-valued k-covector on T is a k-linear alternating function f: T'x T — V.

k times

By the universal orpoerty of AT,

AFT
T “. 3! linear f
P2
T8 —— V
Notation: Ax(T,V) = {V-valued k-covectors} ~ Hom(A*T,V) ~ (A*T)V @ V ~ (A¥TV) ® V, where the last two
follows from linear algebra.
Def. A V-valued k-form on a manifold M is a function that assigns to each p € M a V-valued k-covector in
(A*TxM) ® V, ie. it is a section of the bundle (A*T*M) @ V.
Notation. QF(M;V) = {C*° V-valued k-forms}. If eq,...,e, is a basis for V, and w € Q¥(M; V), v1,...,v5 € T,M,
then wy(v1, ..., v6) = Y1y Wy (1, ..., Uk )€, L.e. w =Y w'e;, where w' are R-valued k-forms on M.
Def. dw =Y (dw')e; if w =3 wie;.
(This definition is independent of the basis ey, ..., e,.)
g-valued forms:
Let g be a finite dimensional Lie algebra, w € QF(M;g) and 7 € Q!(M, €).
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note the o satisfying (o(1) < ---o(k), o(k+1) <--- < o(k+1).
Example. If w, 7 € QY(M, g), then [w,7](X,Y) = [w(X),7(Y)] — [w(Y), 7(X)].
Proposition. If X7i,..., X, is a basis for the Lie algebra g, and w = > w'X;, 7 = > 77X, then (i) [w,7] = D w’ A

Tj [)(27 X]]
(ii) [1,w] = (—1)(degw)(degn) 1, 7] (note the extra plus one in the sign). (iii) dw, 7] = [dw, 7] + (—1)38% [w, d7].
gl(n,R)-valued forms:
gl(n,R) has two multiplications: [—, —] and matrix product.
A basis for gl(n,R) is {e;; }1<i j<n, Wwhere e;; is the n X n matrix with 1 in the (¢, j) position, and zero anywhere else.
We have e;jen = d;j1e4,

Def. If w =Y wWe;; and 7 = S 7klesy, then we define w A7 =Y w¥ A Tkleijekl =Y w A rhley.
Proposition. If w,7 € Q*(M, gl(n,R)), then [w,7] = w A T — (—1)48~de87+ A, (note that the sign does not contain
extra minus one).
0 if degw is even,
2w Aw if degw is odd.
Fundamental vector field:
Suppose a Lie group G acts on a manifold P on the right.

Corollary: [w,w] =

Proposition. For A € g =1ie(G),p€ P, g € G,

rg*(A;) = (Adg_l)Apg.
Let c¢(g9): G — G be conjugation by g, c¢(g)(z) = gzg~*.
Def. The differential Ad(g) = ¢(g)«: TG — T.(G).
Proof: Let j,: G — P be j,(g) =p-g. Then (j,)«(A) = % ij(etA) = %
(rg ij-)(x) =pxrg =pg - (gilxg) : pg - C(gill(x) = jpg(c(gi )(x)) : (jpg © 0(971)) (ac), SO Tg O Jp = Jpg © 0(971)'
By chain rule, (rg).(4,) = (rg)«(jp)«(A) = (jpg)s(c(g71))+(A) = (jpg)+((Adg™")A) = (Adg~")A

1.16 Lecture 16

Connection on a principal bundle

1.17 Lecture 17: Curvature on a principal bundle

Review of last lecture: let G be a Lie group, w: P — M a principal G-bundle. A connection on P — M is a C*
right-invariant horizontal distribution, or, equivalently, it is a g-valued 1-form, w, on P, s.t. (i) for A € g, w,(4,) = A,
and (i) 7} (w) = (Adg™"w.

The Maurer—Cartan form on G is the unique left-invariant g-valued 1-form 6 on G s.t. 0.(X.) = X, for X, € g = T.G.

¢ satisfies the Maurer—Cartan equation: df + $[0,6] = 0.

MxG "= G
Example: lﬂl . Let w = 730, a g-valued 1-form on M x GG. Claim: w is a connection on M x G — M.

M
We have dw + 3[w,w] = 0,

Definition (Curvature of a principal bundle). The g-valued 2-form Q = dw + %[w,w} on a principal bundle P is
called the curvature of the connection w.

It is a measure of the deviation of w from the Maurer-Cartan connection.
With respect to a basis X1, ..., X,, of g, w = > w* X}, Q = > QF X}, where w* and QF are R-valued forms on P.
We have Y2 QF X}, = 3 (dw®) Xy, + 5[> wiai, wia;] = Y (dw) Xy + 5 D w' Aw’cfay, so

Theorem (Second structural equation).
1 . .
OF = dw + §Zc§jw’ Aw.
j
(The 1st structural equation is for the principal bundle associated with the tangent bundle.)
Theorem (Bianchi’s second identity).

aQ = [, wl.
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(Uses [dw,w] = —[w, dw], and [[w,w],w] = 0.)

Theorem. The curvature Q on P satisfies (i)  is horizontal, i.e. ¢ x,§2 = 0 for any vertical vector X, = Ap for some
Aeg. (ii) riQ = (Adg™")Q, (iil) Q,(X,,Yp) = (dw),(hXp, hY}). where X, = vX, 4+ hX), is the decomposition of X, into
vertical and horizontal components.

(Proof can be found in Tu’s book on Differential geometry.)

Suppose a Lie group G acts on a C* manifold M. Then Q(M) = {C° forms on M} is a differential graded algebra
(dga).

On Q(M), we can define 2 actions of g: (i) ta7 := 747, and (ii)LaT := LaT.

We can also define an action of G: for g € G, (iii) g - 7 = r;7, Cartan homotopy formula L4 = dia + tad.
Def A dga with athe action (i), (ii), (iii) satistying (iv) is called a G-dga.
Example: if M is a G-manifold, then Q(M) is a G-dga.
The Weil algebra is
W(g) =A(g") ® S(g").

Definition (The Weil map). The Weil map f: W(g) — Q(P) is defined as follows. Let « € g¥, p € P, then
T,P <% g &R,

then o ow, is an R-valued 1-form on P, as p varies over P.

This gives a map fog" — QYP), f(a) =aow.

We can extend f: A(g¥) — Q(P) as an algebra homomorphism, i.e. if X1, ..., X, is a basis of g, a!,...,a™ is the dual
basis, then A(g¥) = A(al,...,a"), we define f(al A---Aa™) = f(al)A--- A fla™).

This gives the Weil map f: A(g") — Q(P).

1.18 Lecture 18: The Weil algebra

Let P — M be a principal G-bundle with a connection w.
where G is a Lie group with Lie algebra g.
Let X1, ..., X,, be a basis for g, and o', ..., o™ the dual basis for g".

Definition (Weil algebra). The Weil algebra
W(g) = Alg")® S(g") = Ala', ...,a") @R[’ ...,a"],
where in A(al,...,a"), o' Ao = —ad Aa?, and in R[al, ...,a"], a’a? = alal.

Let 0; =a'®1 € W(g), upo=1®a’ € W(g). Then we have W(g) = A(0;,...,0,) @ Rluq, ..., up)].
We give a grading by degf; = 1, and degu; = 2.

We defined the Weil map f: A(g¥) — Q(P).

Similarly, if  is the curvature of w and p € P, a € g*, then

T,P < g SR
gives an R-valued 2-form a0 (2, in P.
Then there is a map f: g¥ — Q?(P).
We can extend f to an algebra homomorphism f: S(g¥) — Q(P),
where S(g¥) = Ru?, ...,u"] with f(u, ..., u*) = f(u) A~ A f(uM).
So we have a bilinear map f: W(g) — Q(P),
(a, B) = f(e) A f(B).
hence, there is a lienar map f: W(g) — Q(P), where W(g) = A(g¥) ®r S(g"). This map is called the Weil map.
We want f to be a morphism of G-dga.

with respect to a basis X1, ..., X,, for g and dual basis o', ..., a™ for gV,
W = ZwiXi, Q= ZQZXl
J0) =0 ow=20" (T wX;)=>,w0X;) =wk, and f(u*) =u" - Q=1u"0o (3 QX;) = Q"
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How should df* be defined in W (g)?

By the second structural equation, QF = dw® + %Z cfjwi Aw.

For f to preserve d, we must define d6* = u* — 1 >° cf]ﬂi NG,

By Bianchi’s second identity, dQ* =Y ciji Awl.

So we must define du* = 37 ¢f;u’6.

We can extend d to the Weil algebra W (g) — W (g) as an antiderivation of degree 1.
This makes W (g) into a dga.

Now define the action of Lie aigebra on the Weil algebra:

Let A € g, we have

E

ok w

|

1a(0%) —— 1a(wh) = Tawk = Wk (A)

Since w(A) = A = > 0%(A)zk, so w*(A4) = constd¥(A), so we must define 14(0%) = 0%(A), in order to make the
diagram above commute.

b s QF

) Jia

LA’LLk — LA(Qk) = TAQk =0
because ) is horizontal.
So we must define t4u* = 0.
We can extend t4 to W(®) as an antederivation of deg —1.
Finally, we define L4 = dita + tad. Because both d and 74 commute with f, £ will also.
If g € G,

ok —>f wk

VK *
TQ\L ng

7“;;9]“ —_ [(Adg‘l)w] F

Let 0 = > 05Xy, u =Y uF X We define r}6 = (Adg=')0, so rj0% = [(Adgfl)ﬂk, and r;0% = [(Adg’l)u]]k.
Extend 7 to W(g) — W (g) as an algebra homomorphism. This makes W (g) into a G-dga.

1.19 Lecture 19: The Weil algebra

Let G be a Lie group with Lie algebra g.

Assume G connected.

The a G-dga has 2 operations: ¢4, L4, in addition to those of a dga.

(We do not need r}.)

The Weil algebra of G is, given a basis X1, ..., X, for g, W(g) = A(g¥) ® S(g") = A(61, ..., 0,) @ Rlug, ..., up]-

d&k = Uk — %Zcfjeiﬁj, duk = chjuiej, LAtgk = ek(A), LAUg = O, EAak = dLAek + TAko =0- %LA(Z ijeitgj),
Laug = digug + Todug, = tadug.

Extend d to W (g) as antiderivation

Proposition: d? = 0 on W (g)

(Since d is an derivation, d? is a derivation.)

Proof: it is enough to check d? = 0 on a set of algebra generators of W (g). Le. 01, ..., 0., U1, ..., Up, O 01, ..., O, db1, ..., dOf.

We have dfl = u — [0,6]. Then one can check that d?6 = 0. This says d?6* = 0 for all k. This shows that d? = 0 on
a set of generators of W(g). So d?> =0 on W (g).

R indeg0

Theorem. H*(W (g),d) = { 0 in deg > 0.

Proof. It is enough to find a cochain homotopy K: W(g) — W(g) of degree —1 s.t. dK + Kd = 1 (so that 1 is
homotopic to 0).

Recall df;, = uy, — %Zcfﬁi@j = 2y, dug, = Zcfjuﬂj.

Then 6;,...,0,, 21, ..., 2, is a set of generators for W(g).
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Define K : W(g) — W (g) by K0, = 0, Kz, = 0y, then it’s easy to check (dK + Kd)0 = 0}, and (dK + Kd)z, = zy.
But (dK + Kd)(0;z;) = 20;z;. To remedy this, we define K = p—iql_( on AP(g¥) ® S(g") for (p,q) # (0,0). This gives
dK + Kd = 1 on W(g) except in degree 0. This shows that H*(W (g,d) = 0 in degree > 0. In degree 0, H°(W(g)) = R
because d(1) = 0.

[Below is from a correction in lecture 21:]

Cohomology of the Weil algebra: Let G be a Lie group with Lie algebra g. W(g) = A(g¥) ® S(g¥). If X1,..., Xpn
is a basis for g and 61, ...,0, is the dual basis for g¥ in A(&"), and uy, ..., u, is the dual basis for g¥ in S(6Y), then
W(g) :A(Hl,,en)(@R[ul, }

Let 2z, = dO, = up — %sz ”9 A Ok, dup = ZC ula Then dby = zi, dz, = 0.

We defined an antiderivation K: W(g) — W(g) Wlth Kz, = 0, K0, = 0. We found dK + Kd = 1 on 6y, z,. We
defined K = ﬁf( on @p+q>0 AP(0y,...,0,) ® SU(z1, ..., 2,). Then dK + Kd = 1.

Note that K is not an antiderivation. If o € AP(6y,...,0,) ® S¥(z1, ..., zn), then dega = p 4+ 2q. Then H*(W(g)) =

0, deg>0
{ R, deg=0

1.20 Lecture 20: The Weil & Cartan model

Since the Weil algebra W(g) has the same cohomology as a contractible space, it can be an algebraic model of EG.

Let M be a left G-manifold.

An algebraic model for M is Q(M) = {C> forms on M}.

Thus, an algebraic model for EG x M is W(g) ® Q(M).

An algeraic model for Mg = (EG x M)/G is (W(g) @ Q(M)), .-

Def. If A is a G-dga, then Ay, = {horizontal elements} = {o € Ajtaa =0 VA € g},

Ainy = {invariant elements} = {a € A|Laa =0 VA € g} (Assuming G connected),

Apas = {basic elements} = {a € Ajtqa =0,Laa =0 VA € g}.

We can extend d and t4 to W(g) ® Q(M) as antiderivations: d(a ® ) = (da) ® 8+ (—1)%8%a ® dB, and L4 to
W(g) ® Q(M) as a derivation.

This makes W (g) ® Q(M) into a G-dga.

Theorem (Equivariant de Rham theorem). For a connected Lie group G and a left G-manifold M,
HZ'(M) = H*{(W(g) R Q(M))bas 7d}?
where RHS gives a Cartan model.

Proposition: If A is a G-dga, then dAp.s C Apas-

Prof: Suppose o € Ay, is basic. Then for A € g, ta(da) = (Aa — dia)a = 0 because « is basic.

La(da) =d(Ay) =0.

So da is basic.

Example. Take M = pt. Then H (pt) = H*((EG x pt)/G) = H*(BG).

By the equivarinat de Rham theorem, H*(BG) = H*{W(g)bas, d}

W(g) = A(el, vesy gn) X R[Ul, ,Un] = {(10 + ZZ ait‘)l- + Zi<j aijGiHj + 4 aln_né)l s en‘al S R[Ul, veey Un}}
a € W(g) is horizontal iff 140 = 0 for all A € g.

taag = 0 because ta(const.) = 0 and tau; = 0. tx,(>; i) =3, a0 = aj =0 if taa = 0if Lya = 0.

Lx, (El<] Clue 0 ) 3¢t (Z a1j919j + 22§i<j aijelﬁj) = Zl<j alej =0if Lx, &0 = 0.

By induction, « is horizontal in W (g) if and only if a = ag € Ruy, ..., uy].

Thus V[/(g)hor = Rlug, ...,un] = S(g"), the symmetric algebra of the dual of g.

W(g)bas = S(g\/)G’

By the equivariant de Rhan theorem, H*(BG) = H*{S(g")%,d}.

Cartan model for a circle action:

Below we take the example of G = S, g = R.

Let X be a nonzero element of g, § its dual basis for g in A(g¥), u its dual basis in S(g").

Then, for G = S, g=R, W(g) = A(0) @ Ru] = (R® R) ® R[u] = R[u] & 0R[u] = {a + b|a,b € R[u]}.
Let M be an S'-manifold, W (g) @r Q(M) = (R[u] ®0R[u]) @r Q(M) = QM) [u] ® QM )[u] = {a+0bla,b € Q(M)[u]}.
a + 0b is horizontal iff tx(a+60b) =0< 1xa+b—0ixb=0< b= —ixa, so a+ 0b is horizontal iff

a+0b=a—60ixa=(1-0ux)a

for a € Q(M)[u].
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1.21 Lecture 21: The Cartan model for a circle action

First: a correction to the last lecture (which has been put back to the end of Lecture 19.)
Why is W(g) is a good model for EG?
EG — BG is the unique (up to G-homotopy) G-bundle s.t. for every principal G-bundle P — M, there is a
commutative diagram
P —— EG

|

M —— BG

If EG were a manifold, then there would be a homomorphism Q(EG) — Q(P) for every principal G-bundle P, meaning
that:

Every principal G-bundle P — M can be given a connection.

So there is a homomorphism (te Weil map) W(g) — Q(P), 0, — wg, ug — Q.

Moreoever, W (g) has the cohomology of a point. In this sense, W (g) is an algebraic model for EG.

Weil model for a G-manifold M is W (g0 @ Q(M) (Wg) @ QM))bas, d).

Horizontal elements for a circle action:

G =S, g =R (i = v/—1, we are putting G to be the circule |z| = 1, so g is the line z = 1, which is iR.) Let X # 0
in g. 6 the dual basis for g¥ C A(g¥), u the dual basis for g¥ C S(g"), then W(g) = A(§) ®r R[u] = (R & Rf) g Rlu] =
R[u] @ Rlul6.

Thus, W(g) ® QM) = (R[u] @ Ru]0) @r QM) = Q(M)[u] & Q(M)[u]6.

So an element of the Weil model W(g) ® Q2(M) is of the form a + 0b, where a,b € Q(M)[u].

a + 0b is horizontal iff tx(a + 0b) = 0 < b = —i1xa (we showed this in the last lecture).

So (W(g) © Q(M))y,, = {a — ixala € Q(M)[u]}.

Since G is connected, a — fixa (see the theorems in Leture 13 &14) is basic iff a — fuya is S'-invariant, i.e. iff
Lx(a—0ixa) =0.

Lx0=(dx +txd)0=d(1)+ixu=0; Lx(Otxa) =0+0Lxtxa=0ixLxa.

Then, a — O xa is basic iff Lxa =0, i.e. iff a is S'-invariant.

But a € Q(M)[u], so a = ap + aju + -+ + - - apu®, where a; € Q(M).

So Lxu = (diex + txd)u = 0.

Thus, Lxa =0 iff Lxa; =0 for all 4, i.e. iff a; € Q(ZW)S1 = {S'-invariant forms on M }.

Finally, for G = S!, and a G-manifold M, we have

(W(g) @ QM) = {a— Oixala € QM) [u]}.

We have the Weil-Cartan isomorphism:

(W(g) ® QM) . =5 QM) [u], (1-0ix)a < a.

bas

The Cartan differential:

(W(g) ® QM ))pas «2— QM)5" [u]
id ldx
(W(g) ® QM))pas —2— QM)5" [u]

The Cartan differential dx is the linear map corresponding to the Weil differential d under the Weil-Cartan isomor-
phism.

Let a € Q(M)S1 [u], then dxa = (podo))(a) = (pod)(a—bOixa) = p(da—utxa+0dixa) = p((da—urxa) —Oixda) =
o((da —urxa) — Oix(da —utxa)) = da — utxa.

Thus we have shown that the Cartan differential is

dX =d— uLx.
Definition (Cartan model). The Cartan model is defined as (Q(M)S*[u], dx).

Theorem (Equivariant de Rham theorem for G = S') We have H}, (M) = H{Q(M)S [u],dx }.
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1.22 Lecture 22: Circle actions. Localization

Example: S' acting on S? by rotation about the z axis.
The volume form on S? is w = xdy A dz — ydx A z + zdx A dy.
Choose X, the generator of S': g = iR, let X = —2mi. Then the fundamental vector field X is defined by, at point

T cos2nt —sin2nt 0 T
(z,y, 2), Ky = % t_oe_%”t Ny | = %|t:0 sin2xt  cos2wt 0 y| = —27ry% + 27Tx8%.
- z 0 0 1 z

(Exercise: check £yw =0, so that w is S'-invariant.)
Definition (Equivariant differential form). A element of Q(M)5" [u] is called an equivariant differential form.

If & € Q(M)S' [u] has degree 2, then @ = wy + fu, where wy € Q2(M)S" and f € QO(M)S". We say that & is an
equivariant extension of ws.

w is equivariantly closed iff dxw = 0.

An equivariantly closed extension of the volume form:

Let © = w+ fu. dxQ = do — wxw = dw + (df)u — wexw — ux(fu) = dw + u(df —i1xw) = 0 iff dw = 0

T

and df = txw. Since dw = 0 already, so the only condition for dxw = 0 is df = txw. We have 1xw = 1xw =
2m(2? + y? + 22)dz — 27z(wdr + ydy + 2dz) = 27dz = d(27z). Thus @ = w + 27zu is equivariantly closed; it is the
equivariant extension of the volume form.

Now, our goal is to finally obtain the coefficients a, b in Eq. . We need more theorems:

[In commutative algebra, localization means introducing denominators.]

Definition (Localization). Let N be an R[u]-module. (HZ (pt) = H*(BS') = H*(CP*) = R[u].) Denote N =
{0,1,2,...} Define the localization of N as N, = {%:|z € N,m € N}/ ~, where % ~ 2 & if 3k € Ns.t. v*(u"z —
u™y) = 0.

Example: Rlu], = {%2 +mt 4+ L tag+ajut- - -+apuf|a; € R} = {Laurent polynimials in u} = Rlu][u™!] =
Rlu,u™1].

N, becomes an R[u]-module.

There is a R[u]-module homomorphism i: N — Ny, z + %. Its kernel is keri = {x € N|% ~ 9} = {z € N|3k €
N s.t. uFz = 0} = {u-torsion elements in N}.

Hence, there is an exact sequence 0 — {u-torsion elements in N} — N AN N, — 0.
Definition (Torsion module). N is u-torsion if every element x € N is a u-torsion.

[The use of localization: if localize N to N, and we get zero, N,, = 0, then we know that N is u-torsion. This is the
theorem below:]

Proposition. N is u-torsion iff N, = 0.

(Proof: “«<” If N, = 0, then the exact sequence gives that NN is u-torsion. “=": Suppose N is u-torsion, let %= € Ny,
there exists k € N s.t. u*z =0, so e w0 _ 0,s0 N, =0.)

ukym ukym

Theorem 1. If S* acts freely on M, then H%, (M) is u-torsion.

Proof:
ES' «—— ES'XxM — M

! | |

BS' «+——— Mg —— M/S?

Since S! acts freely on M, by the Cartan mixing diagram above, Mg1 — M/S! is a fiber bundle with fiber ES?.

By homotopy exact sequence, Mg: is weakly homotopic to M/S'. By a theorem of algebraic topology (see e..g.
Hatcher) that says if two spaces are weakly homotopic, then they have the same cohomology, then we have H*(Mg1) ~
H*(M/S"). As H%, (M) = H*(Mg:1), and H*(M/S") is the cohomology of some finite dimensional manifold, this means
that H*(M/S") is a finite dimensional vector space over R.

On the other hand, the equivariant cohomology H, (M) is a R[u]-module (M — pt induces H*(pt) — H¢ (M), where
G = S so H*(BS') = H*(CP*>) = Ru]). We further assume M is compact, so R[u]-module is finitely generated
R[u]-module. (Next lecture we will look at non-compact case.)

Since R[u] is a PID, and finitely generated modules over PID has the structure theorem which says that it has the
form R[u]" @ torsion. If it contains nonzero R[u]" then this would be infinite dimensional. Hence, HE, (M) is torsion.

Next time we will further show that H¥, (M) is a u-torsion.
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1.23 Lecture 23: Properties of localization

If k > dim(M/G), then u* - HY (M) = 0 (since its degree is larger than the dimension of dim(M/G).)
If M/G is not compact, then H (M) would be infinitely dimensional, but u* - H% (M) = 0 still holds for a free action.
Therefore we have the following result

Theorem. If S acts freely on M, then HZ, (M) is u-torsion.

To generalize this result to non-free actions, we need further results from commutative algebra/homological algebra.
Main three results we need are

1. Localization preserves exactness;

2. Localization commutes with quotient

3. Localization commutes with cohomology.

Theorem 1. If A & B & C' is an exact sequence of R[u] modules at B, then 4, EIN B, 2% O, is exact at B,,.

(Recall that f,(-%) = %, sol, =1, (go flu = gu o fu, so imf, C kerg,; Suppose gu(%) ~ %, ie. % ~ %, S0
there exists k € N s.t. u” - g(b) = 0. But g is a morphism of R[u]-modules, so u¥g(b) = g(u*b) = 0, so u*b € kerg = imf,
so uFb = f(a) for some a € A. so b = ":E‘,f), and UIZ,L = di(f,)n = fu(;%Fw ), this proves that kerg, C imf,. Therefore
A, — B, — C, is exact at B,,. The result can them be extended to longer exact sequences.)

Theorem 2. Localization commutes with quotient: If A is an R[u]-submodule of B, then (£)u ~ %.
(0 A— B — B/A — 0 is exact. Since localization preserves exactnes, 0 — A, — B, % (B/A), — 0 is exact. This

implies that (by one of the isomorphism theorems of algebra) k]g;g ~ img and so % ~ (%)u)

Theorem 3. Localization commutes with cohomology: If C is a differential complex, C° Lot ord gt 2= 0,
then C,: C? Lu, cl LN C? — ... is again a differential complex (because d2 = (d?), = 0), and H*(Cy, dy) ~ H*(C,d),.
_ ker(dy: CE—CETY)
(Hk(Cw du) = m
We have 0 — kerd — C* % C*+1 is exact. Since localization preserves exactness, so 0 — (kerd), — CF Ly Ck+1 s
exact, so we have (kerd), = ker(d,,).

On the other hand, C*+! % ¢k — C* /imd — 0 is exact. So when localize, we get that C*+1 Lu, ck I (C*/imd), — 0
Ca

kerm

is exact, and we have (C*/imd), ~ C¥/(imd), by theorem 1; and by the isomorphism theorem we have imm =

c* . .
(a0 im(dy) = (imd),,.

Therefore H*(C,,d,) = % = % ~ (llfn%)u = H*(C,d),.)

Next lecture we will study locally free action:
Definition (Locally free action). An action of a topological group G on a topological space X is locally free if Stab(x)
is discrete for any x € X.

Example: St acts on C? by \- (21,22) = (A21, \"22), where n € Z7.
Stab(0,0) = S1, Stab(0, z2) = {n-th roots of 1} if 25 # 0, and Stab(z1, z) = 1 if 21 # 0.
The action of S* on C? — {(0,0)} is locally free.

1.24 Lecture 24: Cohomology of a locally free action

Recall the definition of locally free action in the last lecture.

Proposition. If a Lie group G acts smoothly and locally-freely on a manifold M, then for all X # 0 € g, the fundamental
vector field X is nowhere vanishing on M.

(Example: S! acts locally freely on S? = {p, ¢}, where p is the north pole and ¢ the south pole. )

(Proof: Suppose X, = 0 for some p € M. Then c(t) = p is an integral curve of X through p: ¢'(t) =0= X, = X ;).
But ¢(t) = e~ X .pis also an integral curve for X through p. By the uniqueness of the integral curve through p, e=**.p = p
for all t+ € R. So Stab(p) contains a curve e *X_ so is not discrete. This contradicts the locally-free condition.)

Proposition. If a compact abelian group acts locally freely on a manifold M, and X # 0 € g, then there exists a
G-invariant 1-form ¢ on M s.t. p(X) = 1.

(we will use the following fact: A manifold with a compact Lie group action has an invariant Riemannian metric (, ).)

(Proof: Define for all p € M, ¢,: T,M — R by ¢,(Z,) = %, where ( , ) is a G-invariant Riemannian metric.

) XoloeZy) X louZ,)  (X,.Z,)
Check that ¢, (X)) = 1. Let g € G. (I59)p(Zp) = @op(lgxZp) = X257 = W, Xty X,y = (X X,y = ¥p(Zp), where

we used 1g.(X,) = (Adg)X w X,p because G is abelian, and the fact that the metric in G-invariant. So we showed

that I7¢ = ¢. Hence ¢ is G-invariant.)
The Cartan model for an S-action on M is (Q(M)S [u],dx), where dxa = da — uLxov.

22



(Check that 1. dx: Q(M)S" [u] — Q(M)S" [u] is an antiderivation of degree +1. 2. d: N — N is an antiderivation of
R[u]-algebras, then d, : N, — N, is an antidervation of R[u,u~!]-algebras.)

Theorem. If S! acts locally freely on a manifold M, then H, (M) is u-torion.

Proof. It suffices to show H, (M), = 0. By the equivariant de Rham theorem, H, (M) = H*{Q(M)S" [u],dx }, where
X #0 € Lie(S'). So H%, (M), = H{QM)5 [u,u"], (dx)u} (because localization commutes with the cohomology).

We have a ¢ € Ql(M)S1 st. o(X) = 1. To show H*{Q(M)Sl[mu’l],(dx)u} is zero, it suffices to find an a €
Q(MS' [u,u=] s.t. (dx),o = 1.

Then dy (;%) = (dx)u (;%) = duX"‘ If dya = 1 and 2 is any dx-cocycle, then z = (dxa)z = dx(az) (because
dxz = 0), meaning that any cocycle z is a coboundary.

To let’s aim to find this a. dx¢p = dp —utxp = dp —u (because txp = 1xp = p(X) =1).

So dx¥ — %‘” — 1, giving —(1 — dgo/u)fldXT% =1,or — (1 + %@ +-- 4 (d“‘,’)n_l) dew = 1, where the expansion stops

u wun—1T

because (dp)" alwady has degree 2n > n, where n := dimM # 0. So (dp)™ = 0 on M.

(dx)u = dxid“’) = d(d“’)_umxdq’ =dixp = d(1) = 0, where we abbreviated (dx), = dx, and we used 1xd = Lx — dvx
and Lx¢ = 0 because ¢ is an invariant form.

Thus, 1+ d,T“O o4 @ff:l is a dx-cocycle.

ngau = dX (%)

So —dx ((1 +de 44 (d:;) : )7) =1 Leta = (1+%+-. +(d1ﬁ) )2 we have dxa = 1, then H*{Q(M)S" [u,u™"], (dx)u} =
HY, (M), = 0.

This proves the theorem.

1.25 Lecture 25: General facts about H (M)

[Part of the proof of the last theorem has been moved to the last subsection.]

Theorem (Borel localization theorem for a circle action). If S! acts on a manifold M with compact fixed point
set F. then N
Hg'l (M)y — Hg'l (F)u

is an isomorphism of algebras over R[u,u"1].

(Eventually of course we want to get rid of the localization constraint. We will get there later.)

Above fixed point sets, we have:

Proposition: The fixed point set F' of a continuous group action on a Hausdorff topological space X is closed in X.

(Proof: Let p be a limit point of F, i.e. there is a sequence p,, € F s.t. limp,, = p. Then, Vg € G, gop,, = p,. Because
the action is continuous, then g o p, — gop. So p, — p = g - p, therefore p € F'. Thus F' is closed.

Theorem. If a compact Lie group acts smoothly on a manifold M, then its fixed point set F' is a regular submanifold of
M. (A regular submanifold is the same as embedded submanifold; and is very different from the immersed submanifold.)

Proof. Since G is compact, we can put a G-invariant Riemannian metric on M. For x € M, consider the exponential
map Exp,: V C T,M = U C M. By choosing V sufficiently small, Exp,: V — U is a diffeomorphism. We can then use
(Exp,) ! as a coordinate map on U.

T, M has a given inner product. This makes 7, M into a Riemannian manifold. G' acts on T, M by g-v = lgv € T, M
since g - = x.

We can choose V' C T, M so that V is G-invariant. For example, if V = B(0,¢) and v € V, then ||lg.v||* = (lgsv, lgev) =
(v,v) = ||[v]|> < €2. So lgwv € B(0,e). Thus , any open ball centered at 0 in T, M is G-invariant. Choose a sufficiently

v e,y

small open ball to be V. Then, from diffirential geometry, there is a commutative diagram J{EXPI J{Esz .

U U

Because l,: U — U is an isometry, (lg w,lgv) = (w,v). Let F be the fixed point set of G on M. Then FNU is the
fixed point set of G on U.

Exp, '(F NU) is the fixed point set of G on V. The subset of V fixed Iy, is {v € V|l v = v} = V N E,, where E, is
the eigenspace of l 4, with eigenvalue 1

So Exp, "(FNU) =V N (NygecEy) = V N (linear subspace) ~ FNU,

Hence F' is a regular submanifold of M.

This completes the proof.
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1.26 Lecture 26: Equivariant tubular neighborhood and equivariant Mayer—Vietoris

Definition (Equivariant vector bundle). A vector bundle w: E — M is G-equivariant if (i) both F and M are left
G-spaces, and 7: E — M is G-equivariant. (i.e. if x € M goes to gz, then the fiber at x goes to the fiber at gz.) (ii) G
acts on each fiber linearly, i.e. l;: E; — Eg; is a linear transformation for all ¢ € G, « € M. (Here we introduced the
notation E, := 7~ 1(x).)

Proposition. If 7: E — M is a G-equivariant vector bundle with fiber V', then ng: Fg — Mg is a vector bundle with
fiber V.

Def. (Tubular neighborhood) A tubular neighborhood of a submanifold S C M of a manifold M is an open set U
containing S s.t. U has the structure of a vector bundle over S with the inclusion i: S < U being the zero section.

Definition (Equivariant tubular neighborhood). A G-equivariant tubular neighborhood of a G-invariant submanifold
S C M in a G-manifold M is a G-invariant open set U containing S s.t. U has the structure of a G-equivariant vector
bundle over S with the inclusion i: S < U being the zero section.

Theorem. (Tubular neighborhood theorem) If S C M is a compact submanifold, then S has a tubular neighborhood
U s.t. U — S is isomorphic to the normal bundle Ng/y; of S in M.
(Proof is given in Spivak’s book.)

Theorem (Equivariant tubular neighborhood theorem). If S C M is a compact G-invariant submanifold of a
G-manifold M, then S has a G-equivariant tubular neighborhood U s.t. U — S is isomorphic to Ng/;-

Theorem (Equivariant Mayer—Vietoris sequence). Let M be a G-manifold, U, V two G-invariant open subsets
such that M = U U V. Then there is an exact sequence

= HEYUNV) = HE(M) — HE(U)® HE(V) 5 HE(UNV) — HEFY(M) — - - (1.7)
where the map 7 is r: (o, B) = (i) @ — (ifqy)*B-

Lemma. If U, V are G-invariant open sets that cover a G-manifold M, then Ug, Vi are open sets that cover M.

(Proof. Since i: U — M is G-equivariant and injective, then ig: Us — Mg is injective (by the property of equivariant
map). By definition, Ug = (EG x U)/G. Since EG x U is open on EG x M, so Ug is open in Mg. Similarly, Vi is open
in Mg. Then, we claim that Mg = Ug U Vg: let [e,x] := [(e,z)] € Mg, where (e,x) € EGx M. Sox e M =UUV. If
x € U, then [e,z] € Ug, and if x € V, then [e,z] € Viz. Therefore [e,z] € Ug U V. This shows that Mg = Ug U V)

With this lemma, we can appy the ordinary Mayer—Vietoris sequence provided we have the following lemma:

Lemma. Us NVg = (UNV)q.

(Proof: UNYV < U is G-equivariant and injective, so (U NV)g — Ug is injective. Similarly, (UNV)g — Vg is
injective. So (UNV)g C UgNVg. Let [e,2] € Ug N V. Then [e,x] € Ug, so (eg,g 1 x) € EG x U for some g € G. Since
U is G-invariant, so x € U. Similarly x € V. Soz e UNV. So [e,z] € (UNV)g,s0 Us NV C(UNV)g. )

Now we apply the usual Mayer—Vietoris sequence to the open cover {Ug, Vi } of Mg, we get

<o H Y (UanVg) — HY(Mg) — H*(Ug) @ H*(Vg) — H*(Ua NVg) — H Y (Mg) — - -

which is Eq. using the fact that H: (U NV) = H*(Ug NVg), H*(Mg) = HE(M) and so on.

Theorem. If S! acts on M with no fixed points, then the action is locally free.

Proof: Since there are no fixed points for any # € M, Stab(z) is a proper subgroup of S'. Note that Stab(x) is a
closed subgroup (because if ¢ is a limit of Stab(x) then Jg, € Stab(z) s.t. ¢, — g, because the action is continuous,
gn T — g-x, which is # — z as g, € Stab(z). By the uniqueness of limit, g - ¢ = x, so g € Stab(z).). As a closed
subgroup of the Lie group S!, Stab(z) is a regular submanifold. If dimStab(x) = 1, so Stab(z) is open in S. But Stab(x)
is closed, and S! is connected, so Stab(z) is either () or S* itself, both impossible. Then we must have dimStab(z) = 0,
then Stab(z) is discrete, hence the S! action is locally free.

1.27 Lecture 27: Borel localization for circle action

The Borel localization theorem (given at the beginning of Lecture 25): Suppose S! acts on a manifold M with
complact fixed point set F. Then the restriction map is a ring isomorphism: HY, (M), =5 H o (F)u.
Proof. Denote G = S! in this proof. Since F is a closed subset of a compact manifold M, it is compact. From last
lecture, F' is a compact submanifold. Since F' is G-invariant, it has an equivariant tubular neighborhood Ng, which is
isomorphic to the normal bundle Np/p;. M — F is a G-invariant open subset, s.t. {Np, M — F'} is an open cover of M
by G-invariant open sets.

By the equivariant Mayer—Vietoris sequence, we have a long exact sequence
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o HEY(Np 0 (M — F)) — HE(M) — HE(Np) @ HE(M — F) — HE(Ng O (M — F)) — -

[Since localization preserves exactness, we are tempted to write down

= HETY(Np N (M — F))y — HE(M),, — HE(Np)y ® HE(M — F)y — HE(Ne O (M = F))y — -+,
but this actually is an exact sequence of R-modules, not of R[u] modules. This shows we cannot localize each term with
respect to u.]

The equivariant Mayer—Vietoris sequence can be written in the form

Hiu (M) = @, Hg (M) d Hi (Np) © HE (M — F)

H*(Np N (M — F))

where all three terms are R[u]-modules, and *, j*, § are R[u]-homomorphisms; i* and j* are of degree 0, § is of degree 1.
This triangule is exact in the sense that the kernel of any map is the image of the prceding map.
[This is an example of exact couple — see Lecture 21 of Bott—Tu.|
Since each term is an R[u]-module, we can localize with respect to u: as localization preserves exactness we have the
exact triangle

H5 (M), : Hz(Ng)y ® Hi (M = F)

H*(Np N (M = F))u

As S' acts on M — F with no fixed points, so the action is locally free, so we have Hj(M —F),, = 0 and H}(NpN (M —
F)) = 0. Therefore the restriction map *: Hgl(M)u — Hgl (Ng), is an isomorphism. But H’gl(NF) = H¥((Np)g1);
Next we'd like to show that H*((Np)g1) ~ H*(Fg).

Since N is an equivariant tubular neighborhood of F';, Np — F' is G-equivariant vector bundle, Hence (Np)g — Fg
is a vector bundle, in which Fg < (Np)q is the zeroth section.

For any vector bundle E' — M, there is a deformation retraction from E to the zero section. So H*((Nr)g) ~ H*(Fg),

Therefore we have an isomorphism

HE(M)y — HE(Np)u = Hg (F)u.

We have proved the Borel localization theorem.
Remark: the Borel localization theorem holds for a noncompact manifold M as long as the fixed point set F' is compact.
In general, the inclusion i: F' — M induces the restriction ¢* that fits into an exact sequence

0 — keri* — HZ (M) 5 HE (F) — cokeri® — 0,

where cokeri* = H, (F')/imi*.
Then we have the exact sequence for the localization

0 — keriy, — Ha (M), 5 Hi (F), — cokeri’, = 0.

The Borel localization theorem tells us that

Corollary. Suppose S' acts on a manifold M with compact fixed point set F. Then

(i) keri*: HE, (M) — HE, (F) and cokeri* are u-torsion.

(ii) if in addition, HZ, (M) is a free finitely generated R[u]-module, then keri* = 0.

(Proof of (ii): H%: (M) is a free finitely generated R[u]-module over R[u] which is a PID, so it is free; but it is also a
u-torsion by (i), so we have keri* = 0. )

Remark: (ii) can be replaced by “if in addition, H, (M) is torsion-free, then keri* = 0.”
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1.28 Lecture 28: Borel localization and ring structure

[First, a correction to the proof of the Borel localization theorem. This part has been incorporated in the proof in the
last lecture.]

The ring structure of Hg, (S?), where S! aicts on S? by rotation about the z axis.

52 —— (52)51
From the spectral sequence of 1 , which degenerates at F, we have HJ (S?) = By = By &
BS' = CP*>

H*(CP>) ® H*(S?) = Rlu] ® (R ® Rw) = R[u] ® Ru]w, where w is the volumne form on S2.

We have dw = 0 but dxw = dw — utxw 75 0, so w is not an equivariantly closed form in H%,(5?%). But we found that
an equlvarlant closed form extension of w is @ = w 4 (27z)u. This is why we had to use @ as the basis.

Let a = 3= = £ + zu. So we have HZ, (S?) = R[u] ® Rlula = Rlu, a]/(a* — u(ciu + cza)).

H}%,(S?) is generated as a ring over R by u and a; We need to determine a? = c;u® + coua.

Below we use the Borel localization theorem.

The fixed point set F' = {p, ¢} (north and south poles), we have an exact sequence

0 — keri* — HZ%: (S?) 5 HE (F),

By borel localization, (keri*),, = 0, so keri* is torsion.

Since H},(S?) is torsion-free, so keri* (as a submodule) is torsion-free.

So keri* = 0, and H%,(5?%) — H%\ (F).

But B3, (F) = Hyy ({p,0}) = H (ps: Wass) = H*(ps2) ® H* (g51) = H*(BSY) @ H*(BS") = Rlu] © Rlu).

We have i*u = (zpu,zqu) = (up,uq), i*a = (ipa,i a) (up, —uq) (using the expression of a, and the fact that the
restriction of the 2- form w, t*w = 0 on a single pomt)

Hence i*(a?) = (u? é’ 2), u*(u?) = (u2, ul), so i*(a® — u®) = (0,0); Since i*: H,(S?) — HZ, (F) is injective, we have
a? —u? =0in H% (5?).

1.29 Lecture 29: Ring structure continued; Local data at a fixed point

2

H%,(S?) is generated as a polynomial ring over R y u, a, with relation a®> — u* = 0 and maybe other relations.

So there is a ring homomorphism

Rlu, a

(a2 = u?)

Now, R[u] is a PID, and as an R[u]-module, ﬁ Rlu] ® Rlu]a is a free module.

Theorem. A submodule S of a free module M (not necessarily finitely generated) over a PID is free, and rkS < rkM.
(see e.g. Rotman)

Therefore, kera is free and of rk < 2.

But HY, (5?) is also a free R[u]-module of rank 2. As Eq. is an exact sequence of free modules, the middle module
is the direct sum of the left and right. This shows that kera has rank 0, so kera = 0.

Therefore

0 — kera — % HE(S%) — 0. (1.8)

Rlu,a] o
(a2[_7 ’LLL) — H;vl (52)
is a ring isomorphism.

Suppose a Lie group G ats on a manifold M smoothly on the left. Then for any g € G, l,: M — M is a diffeomorphism.
So there is an isomorphism lg.: T, M — Ty, M. If x is a fixed point of the action, then l4.: T, M — T, M. This gives a
map p: G — GL(T, M) = {non-singular linear automorphisms of T, M — T, M}, that sends g > ..

Moreoever, p(gh) = (g © ly)s = Lye © lns = plg) © p(h).

Thus p: G — GL(T, M) is a group homomorphism.

Def. A representation of G is a group homomoprhism p: G — GL(V) for some vector space V.

Def. If p1: G — GL(V1) and pa: G — GL(V3) are representations, then p; @ p2: G — GL(V; @ V2) is defined by

v\ _ (pi(g)v) _ (pilg) O vy

(p1 @ p2)(9) (Uz) = (pz(g)vz) = ( 0 pz(g)) (W)l

Def. W is an invariant subspace of V if p(g)(W) C W.

Def. If 0 and V are the only invariant subspaces, then p: G — GL(V) is irreducible. Otherwise, p is reducible. p is
completely reducible if p is the direct sum of irreducible representations.

(Q: is every reducible representation completely reducible?)
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Example: p: R — GL(R?) by t is reducible, because z-axis is an invariant subspace. But it is not

1t
0 1
completely reducible, as the matrix is not diagonalizable.

Theorem. Every finite dimensional representation of a complact Lie group is completely reducible.

Def. Two representations py: G — GL(V) and pw: G — GL(W) are equivalent if there exists an isomorphism

f:V—=>Wst. Vg eqG,
v pv(g) v
':J/f :J{f

W pw(g) W

is commutative.
Theorem. The nonequivalent irreducible representations of S* are (1) the trivial rep 1: ST — {1} € GL(R) = R* of

dimension 1; (2) rotation L™: S — GL(R?), L™(e't) = o8 mt = smmt
sinmt  cosmt
L=m)

Isolated fixed points of a circle action

At a fixed point x of a circle action on M, We have p: S — GL(T,M), so p can be written as a direct sum of
irreducible representations of S':

p:Lm1 L. -HL"**P1H---P1.

Theorem. If z is an isolated fixed point of a circle action, then p does not contain any trivial representation as
summands.

Proof. Since S' is compact, there exists an S'-invariant Riemannian metric on M. Then [,: M — M is an isometry,
(lgsv, lgxw) = (v,w) for all g € G.

At a fixed point z € M, choose V to be a small open ball about 0 € T,, M,

Then there exists a commutative diagram

)7 m € ZT. (In general, L™ is equivalent to

where Exp,, is a diffeomorphism.

So ly(Exp,v) = Exp, (lg+v), if lgxv = v for all g € G, then Exp v is a fixed point of G.

Under the diffeomorphism, Fixed points in V = FNU,

But Fixed points in V' =V N (linear subspace of T,, M)

If FNU is isolated, then Ngeg(eigenspaces of g, with eigenvalue 1) = {0}, therefore p cannot contain a trivial
representation of dimension 1.

1.30 Lecture 30: Localization formula for a circle action

For a circle action, [ u?= Zpe  Up for an equivariantly closed form ¢.

Manifolds with boundary

Def. If M is a manifold with boundary M, and p € OM, then locally at p, there exists a neighborhood U s.t. U is
homeomorphic to open subset of H" = {(z!,...,2") € R"|2" > 0}.

T, M = {derivatives on germs of C*° functions at p} = R{a%dp, e 7%\,,}. TrM = R{dz'],, ..., dz"™|,}.

Everything that we have done so far generalizes to a manifold with boundary.

Integration of an equivariantform:

Def. If w € Q(M)S [u] is an equivariant form of degree k, then

W= wy + wy_ou + wy_su? + - - -, and we define

[om [ae([as)ur ([ on)ie

If £ and n = dimM have different parity: then fM w=0.

o : B _f (fyywn)u™  for k> n,
If £ and n = dimM have the same parity, say k = n + 2m, fMoJ = { 0. for k < m.

Theorem (Stoke’s theorem for equivariant forms). Suppose S! acts smoothly on a compact orientable manifold M
with boundary M. (S* will act on the OM.) If w € QM) [u] of degree k, then

/de:/ w.
M oM
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(k is independent of n = dimM.)

Proof. Suppose k+1 and n have different parity, then both sides are zero for degree reasons. Now assume k+1 = n+2m.
Then [, dxw = [;, dw — uexw = ([y; dwp—1) u™ — u# [}, txwpi1 = ([}, dwn—1) u™ = (faMwnfl) u™ = [ w. (we
have used that w,+1 is automatically zero on a manifold M with dimension n.)

Rationale for a localization theorem

Suppose S! acts on M with only isolated fixed points. Let F = {fixed points}.

Then T, M has no trivial 1-dimensional irreducible representations. So T,M = L™ @ --- @ L™, where L is the
standard 2-dimensional representation of S'. Hence, dimM = 2n.

We can put an S'-invariant Riemannian metric on M. Then S! acts by isometries on M.

Around each point p, let B(p,e) be an open ball of radius . S* acts on M — UpepB(p,€) without fixed points, and
therefore the action is locally free. Let X = 27i € Lie(S!). For a locally free action, we found an S'-invariant 1-form
0 e Ql(M)Sl, st. (X)=1. And a € Q(M)S1 [u,u=t] s.t. dxa = 1. In fact, a = —% (1 + % + -+ (%e)nil), a has
degree —1. ) .

With this a, we can define a cochain homotopy K: Q(N)* [u,u™1] — Q(N)® [u,u~!] by Kw = aw. Check: Kdx +
dxK =1.

Now replace M by M = U,erB(p,¢), if ¢ is equivariantly closed on M, then ¢ = (Kdx + dxK)¢ = dxK¢ on
M —UB(p,¢), so fM—UB(p,s) ¢ = fM—uB(p,s) dx K¢ = — fB(M—UB(p,E)) Ko=3 cr fsgnfl(s) K¢. (To be continued in the
next lecture.)

1.31 Lecture 31: the ABBYV localization formula for a cicle action

Then, we have fM ¢ = ;1_{% f]VI*UB(P’E),pEF b= GZF Cp-
P

At an isolated fixed point p, T,M = L™ @ --- @ L™n, the numbers mq, ..., m,, are the exponents of the fixed point,
defined up to sign. But with the requirement that the orientations on the two sides agree.

Theorem (Atiyah—Bott 1984, Berline—Vergne 1982). If S! acts on a compact oriented manifold M of dimension
2n, with only isolated fixed point set F', and ¢ = ¢o,, + op_ou + -+ + fu™ € Q(M)S1 [u], degp = 2n, ¢ is equivariantly

closed, then )
_ _ [
/M¢2n - /M(b_ Z my -y (p)

p inF

Conditions for ¢ to be equivarinatly closed:

dX¢ = dd)_ULXQb =0« dX¢ = d¢2n+(d¢2n72)u+ . '_LX¢2n)u_(LX¢2n72)u2_' =0& d¢2n = 07 d¢2n72 = LX¢2n7
dpan—a = LxP2n—2, ..., df = LxP2.
Example. Surface area of unit sphere S2.

Let S! act on S? by rotation about z axis. Let X = 277 € Lie(S!). The volume form on S? is w = xdy A dz — ydx A
dz + zdx Ndy € 92(52)51.

Area(S?) = [, w.

We need an equivariantly closed form @ = w + fu. dxw =0 < dw =0 and txw = df.

We found before that f = 27z.

We orient S? using w in the sense that if vy, vs is a positive basis for T, M, then w,(v1,v2) > 0. So the orientation of
S? at P =(0,0,1) is given by dx A dy. Hence the orientation for TpS? is (8%, 3%). Hence TpS? = L so m(P) = 1.

At the south pole Q = (0,0, —1), wg = —dx A dy, so T(S?) is oriented by (a%v %).

Hence m(Q) = —1.

By the ABBV formula, Area(S?) = [,
Blow-ups (a way to avoid taking limits)

L~ P @ 2w 2m(=1) _
W= Jpo=mm tmg = 1t oo = A

Definition (Blow-up). The blow-up of a manifold M at a point p € M is (]Tj, o M — M) where M is manifold with
boundary and o: M — M — M — {p} is a diffeomorphism, and c~1(p) = OM is in one-to-one correspondence with the
unit sphere in T, M.

Let B be open subset of R? with 0 € B. Define B = {(z,v) € B x $2"~!|z is in the ray of v}. Then define o: B — B,
o(z,v) = z. Then ¢~(0) = {(0,v)|v € '} = S*. If & # 0, then 0~ (2) = (z, 37), so 0 is a diffeomorphism on B—o~*(0)
and maps S to 0.
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1.32 Lecture 32: Proof of the localization formula, continued

Real blow-up: ~

If o: M — M is the real blow-up of M at p € M. Locally relative to a charge (U, z!,...,2™) at p, o: U — U is given
by U = {(x,v) € U x §" |z = tv for some t € RZ%, v € S"~! is a unit vector}. If # # 0, then it determines a unique
inverse image (z, Hzll) If z =0, then o~ 1(0) = {(0,v)|v € S 1}.

If f: M — M has p as a fixed point, then f induces a map f: M — M: on M —o~ Y(p), o is a diffeomorphism, so
f=o0"lofoo;ono }(p)=5"" = {all tangent directions at p}, by continuity, f(v) = II?EZ;H

Suppose S! acts on M with isolated fixed points. Put an S'-invariant metric on M, dimM = 2n. Then S! acts on M
by isometries.

At a fixed point p, T,M is a representation of S', so T,M = L™ & --- @& L™» # 0. Where L is the standard
representation of S' on R2. (e acts on (x,y) through the usual rotation matrix rot(t).)

The action of S! on M induces an action on M that takes Sg”fl to Sf,”*l CT,M. If w= (u1,v1,u2,V2, ..., Un, Vp) €
T,M, then e = diag(rot(mt), rot(mat), ..., rot (m,t))w.

Let X = —2ri € Lie(S'), then X, = 4

—w
where we defined J = <(1) B ) So X, =27 Z?Zl m; (—vja%j + uva%j) on T,M.

627rzt
t=0

— 4
W= gy

diag(rot(2mmyt), ..., rot(2rmyt) )w = diag(2mmy J, ..., 2rmy, J)w,
0

A 1-form 8 on T,M st. (X)=11is 0 = (%T > mij(—vjduj + ujdvj)) m

On S2"1 X =21y m; ( UJa + u, 82 ) 0=+ mij(—vjduj + ujdvj).

Volume form on a sphere:

S"~1 ¢ R™ is the boundary of the n-ball D™. D" can be the same orlentation as R™. volpn = da' A -+ A da™,
give S"~! the boundary orientation of D™. The radial vector is 7 = Zz -7 Its volume form is volg1 = ¢ voan =
Uy aia,,; (dz' A~ Ada™)y =300 (1) dat A A dzi A+ A a™,

Surface area of S?"~1: vol(§2"~1) = fSZ’"*l volgzn—1 = (f%z),

Proof of the localization formula .

Suppose S! acts on M with isolated fixed point set F. Let o: M — M be the blow-up at all the fixed points. Choose
X #0 € Lie(SY). Let ¢ € Q(M)S [u).

Lemma: dxo* = o*dx on Q(M)S [u].

(Proof: dxo*¢ = do*¢p —uixo*¢ = 0*dp — utxo*¢; (txo*¢)(...) = 0" (X7, ...) = 9(0.X 57, 04...) = A Xy, 04.0.) =
(tx®)(O4,...) = (6*tx@)(...). Therefore, dxo*¢p = o*dp —uoc*1x¢ = O'*dx(;5 )
Assume ¢ equivariantly closed. We have found K : Q(M) s [u,u=1] — Q(M) "[u,u™Y s.t. Kw = aw, where we defined

o= =L (1494 op ()", and dy K + Kdx = 1. So dx K¢ = o.

1.33 Lecture 33: Completing the proof of the localization formula
Ju® = [y_p @ (because F has measure 0) = [57_,,,0%¢ (because o: M — 0M — M — F is a diffeomorphism)
= [370%¢ (because OM has measure zero) = JiidxKo*¢ (since 0*¢ is equivarinatly closed) = [,5; Ko*¢ (Stoke’s
theorem) = [, gan-s Ko*6 = 3 cp fznr & (1 gy (ﬁ)"*l) ",
Assume deg¢ = 2n, then ¢ = ¢o,, + Pop_ou + -+ fu™ € Q(M fM ¢ = fM Pon.
St M
In the integral fsg"ﬁ Ko*¢ = fsgnfl i*(ao*g) = fsgnfl(i*a)i*a*@ o*¢ is restricted to Sg“’_l, SO UJ, Jg ,
{p} —— M
017079 = 76 = 0" ph") = S 1
So [y ¢ = ZPEF fSM 1y (1 + %o +-t (%0) ) fpu™ = ZpeF fsf,”*l 0(do)" =1 f(p) = ZPEF fp fszﬂ 16(do)"~
Recall that 6 = 5= 37", mj( gjduj + ujdvj) on S2n=t df =13 mijduj A dvj,
(do)y"1 = (n—1)! s duidvi...du;dv;...du,dv,

an—1 j=1 my..Mj...My ’
0(do)"—2 = 27%” > ml"l‘m (vjduydvy...dujdv;...duydv, + wjduidv;...dujdv;...du,dv, = #%volsgnq.
n—1 _ (n—=1)! 1 27"
Hence fs;‘;"*l 0(db) = T2 mioma®) =D mioma(p)”

Finally, [,, ¢ = > %7 which is the localization fomula.
pe

my... My,
F

29



Note that | v Pon = / a @+ So this gives a way to calculate the ordinary dfferential form.
Later part of the lecture introduces “the Cartan model in general” which we put to next lecture.

1.34 Lecture 34: The Cartan model in general

Let G be a connected Lie group acting on a manifold M on the left.
Choose a basis X1, ..., X,, for g = Lie(G). Let 01, ...,0, be the dual basis for gV in A(g¥). Let ug, ..., u, be a dual basis
for gV in S(gV), where degf; = 1 and degu; = 2.
For X € g, 1x6; = 0,(X), txu; =0, dby, = —% Zcéﬂjei N0 + ug, dug, = Zci?juzﬂj.
Lx =dix + txd.
Introduce the shorthand: ¢; = vx,, £; = Lx,, ar = a;,...i,,,and 0y =6;;, A---0
The Weil algebra is W(g) = A(g¥) ®r S(g¥) = A(64, ..., 0,) @ Rluq, ..., up].
An algebraic model for EG x M is W(g) ® Q(M), with ¢tx0; = 0;(X), txu; = 0.
An element of W (g) ® Q(M) = A(g¥) ® S(g¥) @ Q(M) can be written as

tm T 911,,,’Lm .

a:ao+zé’iai+29i/\Gjaij+-~-+91A---/\enal,,,n,
%

i<j

where a; € S(g") ® Q(M),

An element a € W(g) ® Q(M) is horizontal if txa = 0 for all X € g, and is invariant if Lxa =0 for all X € g, and is
basic if it is both horizontal and invariant.

Because tx and Lx are R-linear in X, a is horizontal < vx,a =0 for i = 1,...,n, and a is invariant < Lx,a = 0 for
t=1,...,n.

tx,d extend to W(g ® Q(M) as antiderivations, Lx extend to W (g ® Q(M) as a derivataion.

Theorem: there is an algebra isomorphism:

(W(g) @ Am))per = S(g) @ UM),

where a = ag + Y a;0; — ao.

(I.e. the horizontal elements are precisely those who do not have 6’s.)

(Proof: ap = > iy -+ U, wr, LxGo = Y Uiy -+ Ui, txwr = 0, as exw = 0 for w € Q(M). For simplicity we show the
case of n =2: a = ag + 010,1 + 92@2 + 01 AN 92(112, 0= lLx,a = l14a9 “+a; — 6’1L1a1 — 02L1a2 + 92&12 + 0192L1a127 0= Lx,a =
Laag — O110a1 + as — Ostoas — B1a12 + 010212a12. a is horizontal < a3 = —t1a¢ and as = —tsag and a2 = t1a9 = —12ay, &
ag = —t1ag and ag = —t9ag and a1a = tat1ag < a = ag — 01109 — Oataag +0102tat1a9 = (1 —0101)(1—02e2)ap. (In the case
n > 2, there will just be more factors.) ¢ has an inverse ag — (1 — 601¢1)(1 — 02i2)ag, so ¢ is an algebra homomorphism,
and therefore an algebra isomorphism.)

The above theorem implies that

(W (g) ® Qm))y,, = (S(a") @ QM) .

Weil Model Cartan Model

The Weil model has a differential dy,. The isomorphism above induces a differential (the “Cartan differential”) for
the Cartan model.

1.35 Lecture 35: Applications of equivariant cohomology

The equivairant de Rham theorem is for any compact Lie group, but the localization theorems are for torus action.
(There’s a localization theorem for a compact non-abelian group, by Lisa Jeffrey, Frances Kirwan. For noncompact
non-abelian group, much is kunnown.)

Theorem (Localization theorem for a torus action). Suppose a torus T of dimensional [ acts smoothly on a compact
closed manifold M with fixed point set F' (not necessarily isolated or 0-dimensional). If ¢ is equivariantly closed on M of

any degree, then -
i
o= [ i
/M rel(v)

where i: F < M is the inclusion, v is the normal bundle of F in M, e (—) is the equivariant Euler class in H24™F(F) =
Rluq, ..., up]-
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A priori, the RHS is a rational function in wq, ...,u;. But because the LHS is a polynomial in uq, ..., u;, the rational
function is actually a polynomial.

Application 1. Integral of invariant forms:

(see the example in previous lectures on the calculation of | g2 Volg2.)

Application 2. Computation of topological invariants

Suppose G is a compact Lie group, and T is a maximal torus in G. E.g. G = U(n), then T = U(1) x --- x Uy =
St x ... x St Then G/T = complete flag manifold of C* = {0 C Ay C Ay C--- C A, = C", where A; ~ C'}.

U(n)/U(1) x ---U(1) has Chern numbers, T acts on G/T by t - (¢T) = (tg)T. ¢T is a fixed point of the action <
tgT = gT forallt € T, = g HgT =T, = g tge T, g 'Tg=T, < g € Ng(T), & gT = Ng(T)/T := Wg(T), the
Weyl group of T in G.

For Lie group G, the Weyl group W¢(T) is a finite reflection group.

Chern number of G/T is fg/T c1(=)" -+ c (=), where the Chern classes are defined for the tangent bundle. The

localization formula can be used to calculate this integral. We get fG/T (=)o (=)= 3
wGWG(T)
This can be generalized to a closed subgroup H of G of maximal rank, e.g. CP" = %7 G(k,C") =
U(n)

TR <U(n—F) "
(Rank of H is the dimension of the maximal torus of H. The rank of U(n) is n.)
For example,

§ : H 10T(ui13~--auik)mr
cl S ma . ck S mi — R
/G(k,«:") (5) (5) [Ticr HjeJ(“i —Uj

=(i1,000s0k) u])

where the Weyl group of G(k, C™) is permutations, indexed by I = (i1, ..., 4x); and J = the complement of I in (1,...,n),
ad o, is the r-th elementary symmetric function.

The RHS in fact is an integer as the LHS suggests.

(For more results, see L. Tu, Computing characteristic number using fixed points, https://arxiv.org/abs/math/
0102013.)

Application 3. Identities. E.g. CP? = G(1,C%). 1 = [.ps(—h)* = [op2 c1(5)? = Z;jzl W?*“J)

Application 4. Pappus’s theorem: '

Use three parallel planes to intersept the sphere. If the two vertical distances are equal, then the surface areas are
equal.

Let w = volgz. Calculate Let w = w + fu be the equivariant extension. We have

fzz::: w= [~ :w = localization formula = 27 (b — a).

Application 5. Symplectice geometry:

M is symplectic if it has a closed nondegenerate 2-form w on it, and G acts symplectically on M if [jw = w for any
g € G. If G is connected, this is equivalent to the condition that Lxw = 0. Then dixw = (Lx — txd)w = 0, Hence txw
is closed.

If txw is exact, say txw = df, then the action is said to be Hamiltonian.

Then w = w + fu is equivariantly closed. This Hamiltonian action is the Hamiltonian in classical mechanics. So we
have the correspondence Classical mechanics < Symplectic geometry < equivariant cohomology.

6. Application in physics: [ M e/ 1 = localization theorem = Y - - -

1.36 Lecture 36: The equivariant de Rham theorem

Recall that:

The Cartan model for a connected Lie group: ((S(g¥) ® Q(M))%, D).

Let X1, ..., X, be a basis for g = Lieb(G), uy, ..., up, be the dual basis for g¥, then S(g¥) = R[uy, ..., up]. The Cartan
differential D is given by Do = da — > u;tx, o, where we define d s.t. du; = 0.

Equivariant de Rham theorem: there is an algebra isomorphism Hg (M;R) = H*{(S(g¥) ® Q(M))¢, D}.

(Cartan proves this theorem for a free action in 1950.)

G acts on S(g") by the coadjoint representation, and G acts on Q(M) by pulling back.

Corollary of the equivariant de Rham theorem. Take M =

Then H( (pt) = H*(BG;R) ~ H*{(S(g")®)rQ(pt))", D} = H*{S( V)& D} by equivariant de Rham theorem; we
have D =0 on S(g¥)%, so we have H,(pt) = H*(BG;R) ~ S(g")% ~ S(t V) , where t is the Lie algebra of the maximal
torus T in G, and W = Ng(T')/T is the Weykl group of T. (the step S(g )¢ ~ S(tV)W is an easy theorem which can be
found in L. Tu’s 2010 paper).

To summarize, we have
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H*(BG) ~ S(g")¢ ~ S(t")".

Example: Let G = U(n), T = U(1) x --- x U(1) = {diag(t1, ..., tn)[t; € U(1) = S'}, then t = {diag(x, ..., *)|* € iR}.
Then W = Ng/(T)/T = & generated by T and Bl — G, (Where we defined E

and S, is the symmetric group on n letters. )
So

the n x n matrix for transposition (ij),

R

H*(BU(n)) = S(g")" = Rlu, ... un] >,

the symmetric polynomials in uq, ..., uy.
Cartan’s theorem on the cohomology of base of a principal bundle:

Theorem. If P — N is a principal G-bundle, then H*(N) = H*{(W(g) ® Q(P))bas}-

Assuming this theorem, one can prove equivariant de Rham theorem:

First, assume free actions:

Fact: If G is a compact Lie group acting freely on the right on a manifold M, then M /G is a manifold, and M — M /G
is a principal G bundle. (For proof, see e.g. Lee’s book on Manifolds.)

By Cartan’s theorem above, H*(M/G) = H*{(W(g) ® Q(M))pas} = H*{(S(g¥) ® Q(M))¥, D}, where the last one
used the Weil-Cartan isomorphism. On the oter hand, when G acts freely, Mg and M /G are weakly homotopy equivalent,
hene H: (M) = H*(Mg) = H*(M/G) (theorem in algebraic topology), so we have

Hg(M) = H*{(S(g") ® (M), D},

Proving the equivarianat de Rham theorem for a free G-action.

Equivariant de Rham theorem for an arbitrary action: Mg = (EGxM)/G, where G acts freely on EG x M. By Cartan,
H*(Mg) = H{(W(g) @ QU EG X M))pas}, this doesn’t work because EG is not a manifold (it is infinite dimensional).

Then, in the more general case (not necesarily free action):

For a compact Lie group G, EG =infinite Stiefel variety V (k, o0), which can be apprximated by V' (k, n) for n sufficiently
large, s.t. for any i, H*(V (k,n),R) = H*(V (k,),R) = 0 for n sufficiently large.

Mg = (EG x M)/G can be approximated by (EG(n) x M)/G := Mg(n), so Cartan’s theorem applies, and this gives
the equivariant de Rham theorem in general.

Now let’s go back to prove Cartan’s theorem:

0 — QP) — W(g) ® Q2AP)bas — B/B — 0 induces --- — H*(Q(P)pas) — H*(B) — H*(B/B) — ---, where

—_ ——
=B —B

H*(QP)pas) = H*(QN)) = H*(N); H*(B) = H*(Weil model). It turns out we can prove H*(B/B) = 0 (Cartan writes
down a cochain homotopy between id and 0 to prove H*(B/B) = 0.)
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